
Politechnika Śląska
Wydział Automatyki, Elektroniki i Informatyki

Paweł Foremski

ZASTOSOWANIE KLASYFIKACJI KASKADOWEJ
DO ROZPOZNAWANIA RUCHU W SIECI INTERNET

INTERNET TRAFFIC IDENTIFICATION
USING CASCADE CLASSIFICATION

Rozprawa doktorska napisana pod
kierunkiem prof. dr hab. inż.
Tadeusza Czachórskiego

Gliwice
31.08.2018

Abstract

The Internet is the largest telecommunication network in the world, being used
by a few billion people everyday. It became the most important communication
medium that deeply changed our lives: nowadays, we rely on Internet services
like the World-Wide Web, e-mail messages, and video conferencing. These ser-
vices need decent infrastructure for transmitting the data between myriads of
servers, personal computers, smartphones, and other devices. Moreover, the
Internet is growing at enormous pace—in terms of traffic volume, connected de-
vices, and number of communication protocols—which means we need adequate
management tools to keep it robust and secure.

One of the basic Internet management tools is Traffic Classification: that
is, matching Internet transmissions to names of applications that generated
them. This tool has several applications, e.g. traffic measurement and visual-
ization, policy routing, traffic shaping, and trend analysis. Contemporary traffic
classification algorithms employ artificial intelligence to automatically learn the
features that discriminate various Internet protocols—that is—no rules are set a
priori by a human operator. However, although highly effective, none of them is
appropriate for all Internet protocols—instead, classifiers are often tailored only
at a specific application. Thus, we need to integrate these algorithms together
in order to manage all Internet protocols in a single system.

In this thesis, we introduce a new method for integrating traffic classifiers:
the Waterfall architecture. It builds upon the Cascade Classification tech-
nique, which connects several modules in a series of classifiers. By means of
experimental validation on real Internet traffic, we evaluate the method and
demonstrate its robustness: for instance, Waterfall is able to classify more than
50% of evaluated traffic using just 3 simple classifiers. We also introduce a cas-
cade optimization technique that lets for tuning a Waterfall system for desired
performance goals by means of simulation.

Acknowledgements

I would like to thank my PhD advisor, Professor Tadeusz Czachórski, and
my grant supervisor, Professor Michele Pagano (University of Pisa), for their
guidance and help. Their friendly attitude and support during the start of
my scientific career was very important to me. I also express my gratitude to
colleagues with whom I authored my first academic papers: Mateusz Nowak,
S lawomir Nowak, and Christian Callegari (University of Pisa).

I owe special thanks to Dave Plonka (Akamai) and Arthur Berger (Aka-
mai/MIT) for the outstanding summer of 2015, when I had the privilege of
being their PhD intern in Cambridge, MA, and for the later successful collabo-
ration. The time I spent with them was pivotal to my career. I also thank my
colleagues—Micha l Gorawski, Krzysztof Grochla, Grzegorz Karch, Micha l Ro-
maszewski, Konrad Po lys, and Mariusz S labicki—for entertaining coffee break
discussions and for reviewing early drafts of my papers.

I thank God for the gift of life and the talent for computers I discovered
at the age of 7, which since then has been one of my greatest sources of joy.
I always owe gratitude (and a long vacation) to my wonderful wife Dominika,
for her patience and for our beautiful daughter Antonina.

I dedicate this work to my deceased mother Grażyna, who devoted her life
to education of me and my elder brother, and to my father Artur, who bought
us the first computer back in the years when it costed half a car.

Pawe l Foremski
Gliwice, December 2017

Work on some of the publications reproduced in this thesis was funded by the
Polish National Science Centre, under research grant nr 2011/01/N/ST6/07202,
project “Multilevel Traffic Classification” [59].

Contents

1 Introduction 1
1.1 Background . 1
1.2 Thesis Statement . 2
1.3 Motivation . 2
1.4 Contributions . 4
1.5 Outline and methodology . 5

I Traffic Classification using Machine Learning 7

2 Traffic Classification 8
2.1 General approach . 8
2.2 The TC problem . 10
2.3 Design and taxonomy of TC systems 11
2.4 Practical applications . 13

3 Machine Learning 15
3.1 Introduction . 15
3.2 Supervised learning . 16
3.3 Training and testing . 19
3.4 Performance metrics . 20
3.5 Multiple Classifier Systems . 22

3.5.1 Behavior Knowledge Space 24
3.5.2 Cascade Classifiers . 25

4 Datasets and Tools 27
4.1 Introduction . 27
4.2 Tracedump: single application sniffer 28

4.2.1 Related works . 29
4.2.2 Problem analysis . 30
4.2.3 Proposed solution . 30
4.2.4 Practical application . 32
4.2.5 Summary . 33

4.3 Flowcalc: flow analysis toolkit . 33
4.3.1 Introduction . 33
4.3.2 IP flow tracking . 34
4.3.3 Available modules . 35

i

5 Literature Survey 37
5.1 Related works . 37
5.2 Traffic classification . 38
5.3 Single application detection . 41
5.4 Obtaining ground-truth . 42
5.5 Traffic analysis . 43
5.6 Discussion . 44
5.7 Conclusions . 44

II Cascade Classifiers of Internet Traffic 47

6 The DNS-Class algorithm 48
6.1 Introduction . 48
6.2 The DNS-Class algorithm . 49

6.2.1 DNS Search . 49
6.2.2 Flow Classification . 51
6.2.3 Rationale . 53

6.3 Datasets and traffic analysis . 54
6.3.1 Traffic traces . 54
6.3.2 Traffic characteristics . 56

6.4 Experimental evaluation . 58
6.4.1 Methodology . 58
6.4.2 Experiments . 58

6.5 Discussion . 61
6.6 Related works . 63
6.7 Conclusions . 64

7 The Waterfall architecture 65
7.1 Introduction . 65
7.2 Background . 66
7.3 The Waterfall architecture . 67
7.4 Practical implementation . 68
7.5 Experiments . 68

7.5.1 Methodology . 69
7.5.2 Results . 69

7.6 Conclusions . 71

8 Optimizing cascade classifiers 73
8.1 Introduction . 73
8.2 Problem statement . 74
8.3 Proposed solution . 74
8.4 Discussion . 76
8.5 Experimental validation . 77

8.5.1 Experiment 1 . 78
8.5.2 Experiment 2 . 79
8.5.3 Experiment 3 . 80
8.5.4 Experiment 4 . 81

8.6 Conclusions . 82

ii

9 Thesis Conclusions 83
9.1 Discussion . 83
9.2 Summary . 85

iii

List of Abbreviations

GUI Graphical User Interface
DPI Deep Packet Inspection
P2P Peer-to-Peer
VoIP Voice over IP
PPPoE Point-to-Point over Ethernet
TTL Time To Live
LAN Local Area Network
QoS Quality of Service
QoE Quality of Experience
DSCP Differentiated services Code Point
CDN Content Delivery Network
ISP Internet Service Provider
DNS Domain Name System
DNSSEC Domain Name System Security Extensions
IoT Internet of Things
SaaS Software as a Service
AI Artificial Intelligence
PR Pattern Recognition
ML Machine Learning
SVM Support Vector Machine
BKS Behavior Knowledge Space
NFL No Free Lunch
MCS Multiple Classifier System
NLP Natural Language Processing
VSM Vector Space Model
TC Traffic Classification
CC Cascade Classification
CF Classifier Fusion
ABI Application Binary Interface
ARFF Attribute-Relation File Format

iv

Chapter 1

Introduction

1.1 Background

Traffic Classification (TC)—or Traffic Identification—is the act of matching IP
packets to names of computer programs that generated them. It resembles an
“Internet microscope”, a tool that lets us to look at an Internet link, see the data
transmissions, and identify various types of IP traffic. Another useful metaphor
to TC is listening to foreigners and recognizing their language. Quite often,
we are able to identify an unfamiliar language or dialect even if we cannot fully
understand it. Similarly, the TC problem is recognizing Internet protocols given
their IP traffic, without interest in their full content.

Having IP packets attributed to specific protocols or applications makes the
Internet easier to manage. For example, TC is important for traffic monitoring:
if we want to visualize the traffic flowing through a router, it is useful to know
the protocols inside. TC also helps network security officers to reveal and track
suspicious Internet activity. It is often used for implementing Quality of Service
(QoS) schemes, via traffic shaping, policy routing, and packet filtering. Scientific
and government agencies employ TC for identifying global Internet trends [27,
159]. However, TC does not imply traffic surveillance of any kind. Historically,
the original motivation for work on this problem was Internet management:
intrusion detection [67] (year 1994) and traffic prioritization [127] (year 1996),
among the others. Nevertheless, nowadays TC is also used for different purposes,
e.g. profiling Internet users [115].

Classifying an IP packet alone is not trivial, as the packet headers do not
have the application or protocol name stored in them. In the past, port numbers
were used for discriminating the traffic class [84] (e.g. linking port 80/TCP
to HTTP), but this became ineffective due to the raise of Peer-to-Peer (P2P)
networking in the early 2000s [81], which uses random port numbers. Nowadays,
a popular and de facto standard classification method is Deep Packet Inspection
(DPI): pattern matching on full packet contents [128]. However, although being
more accurate than port-based classification, it requires more computing power
and brings privacy concerns. Moreover, pervasive encryption and other issues
make DPI increasingly irrelevant [48,82].

Instead, modern classifiers investigate groups of packets to find distinguish-
ing features of IP flows, rather than of single IP packets. Usually, a sequence of

1

packets is statistically summarized—for example, using the average packet size
and inter-packet arrival time—and the resultant feature vector is classified using
a Machine Learning (ML) algorithm, e.g. Support Vector Machine (SVM) [86].
Such methods are largely resistant to misuse of the port number and to encryp-
tion: the overall behavior of a particular protocol or host is examined instead
of seeking for a strict match in a single packet. Moreover, the essence of ML
classification is training an algorithm to discern between two groups of abstract
objects without programming it explicitly to do so. This means that ML-based
traffic classifiers learn Internet protocols by example, without the need for a
priori rules set by a human operator.

However, future TC methods will have to deal with an increasing adoption of
encryption, encapsulation, multi-channel techniques, and with the tremendous
growth of the Internet [40]. TC becomes more complex and needs breaking
into smaller parts to keep it tractable. Recent publications follow this path
by proposing various novel techniques—e.g. counting packets [14], intercept-
ing DNS traffic [15, 63], analyzing payload frequencies [55]—that address only
a portion of the Internet traffic. However, we lack methods that would com-
bine these proposals to effectively work together. We need to apply Multiple
Classifier System (MCS) techniques to the future of TC [87].

1.2 Thesis Statement

In this thesis, we show how to apply cascade classification to solve the TC
problem by integrating many classifiers to work together. We will show that:

Cascade classification is an effective method for identifying Internet
traffic. It allows for connecting different traffic classifiers together
using the “divide and conquer” paradigm, and in comparison with
classifier fusion, it inherently requires less computing power.

The thesis contributes to the state of the art in computer science by introduc-
ing a new method for TC, which is an important computer networks problem.
Our goal is to present an original method per se, thus we present a qualitative
comparison with classifier fusion as a commentary.

1.3 Motivation

Let us analyze the main factors that influence the future of TC. We confront
this issue from two viewpoints: computer networks and artificial intelligence.

According to a recent Cisco forecast [34], the annual IP traffic transmitted
in 2021 will reach 3.3 zettabytes (3.3 trillion gigabytes), growing at 24% yearly
from 2016. By that time, there will be roughly 27 billion devices connected to
the Internet, and more than 63% of the traffic volume will come from wireless
and mobile devices. Another challenge is the Internet of Things (IoT) network:
according to Gartner, by 2020 there will be 20 billion of IoT endpoint devices
installed worldwide [69]. Taking another perspective, in 2014 IDC estimated the
number of software engineers to be roughly 18.5 million [77]. Even if only some
of them develop Internet applications, the number of application protocols in
the world can easily reach millions. For instance, there were 3.5 million Android

2

applications in the Google Play Store as of 2017 [10], and each of them could
possibly implement its own protocol on the top of the HTTPS protocol.

The Internet is growing at an enormous pace, in terms of traffic volume,
connected devices, and new use cases. Inferring from the history of the Internet
and from various forecasts, we can expect completely new protocols to appear,
making the task of traffic identification more challenging. For instance, future
TC algorithms will have to deal with huge bit rates, enormous size of the IPv6
addressing space, and protocols built atop of various overlay techniques (e.g. Tor
anonymity network or QUIC). Even today, we need different TC methods for
different parts of the Internet traffic: long-established protocols remain easy to
identify (e.g. HTTP [84]), while newer protocols require detailed examination
and more computing power (e.g. P2P-TV [14]). We argue that classifying all
of the Internet traffic with a single technique—at full speed, versatility, and
granularity—will be increasingly troublesome. Instead, we propose to split the
TC task into smaller parts, solve them separately, and combine the outcomes
so the whole system can handle a relatively complete mix of Internet traffic.

On another hand, looking from the artificial intelligence perspective, there
is the well-known No Free Lunch (NFL) theorem that shows no superiority
of any classification algorithm over the rest [153]. It states that in principle
it is impossible that a particular classifier performs better for some specific
problems without worse performance for the rest. Indeed, it is only possible to
trade performance on rare problems with those one expects to encounter more
often [45]. Thus, we can take advantage of the NFL theorem by isolating many
subproblems in TC and solving them separately using different classifiers. This
brings the idea of MCS, or ensemble learning, in which one uses many classifiers
for better performance than could be obtained by using any of them alone [87].
The basic idea behind MCS is to use a pool of classifiers on the same problem—
either all of them (classifier fusion) or a some of them (classifier selection)—and
to apply a combining strategy (e.g. voting) on their outcomes to obtain the final
result. Such design can improve TC systems: for example, A. Dainotti et al.
showed this for classifier fusion, using Behavior Knowledge Space (BKS) [41].

In the thesis we apply cascade classification, which is inherently different
than classifier fusion, as it is a variant of classifier selection. In principle, cas-
cade classifiers work by querying the base classifiers sequentially : if a particular
classifier provides the answer to given problem, it wins—otherwise the process
advances to the next module. Although being relatively neglected, cascade
classifiers could be of primary importance for real-life applications [87]. They
naturally break complex tasks into subproblems. In [64], we introduced cascade
classification to TC. By experimental evaluation, we found for example that by
ordering the classifiers properly, over 50% of IP flows were identified in the first
3 classifiers out of 5 total. Thus, our proposal requires less computing power
than classifier fusion, which always uses all of its modules. Our method also has
many other advantages that we will show in the thesis.

As motivated above, future TC systems will have to break the complex traffic
identification task into many subproblems. The MCS architecture, developed
for several years in the field of machine learning, seems an adequate tool for
this purpose. We introduce cascade classification—an MCS variant—to traffic
identification, because it is a novel method and we believe it has important
advantages over solutions already presented in the literature.

3

1.4 Contributions

Below we enumerate the central contributions of the thesis:

1. We present Waterfall, a novel method for traffic identification.
To the best of our knowledge, we are the first to propose this novel idea
in TC. (see Chapter 7)

2. Waterfall integrates independent classifiers together. It imple-
ments the divide and conquer design paradigm that enables iterative devel-
opment of TC systems. We demonstrate an illustrative system consisting
of 5 different classifiers. (see Section 7.4)

3. Comparing with classifier fusion, Waterfall is inherently faster.
It does not require all modules in the pool to be run on all IP flows. By
experiments on real traffic we show that it is even possible to reduce the
total computation time by adding new classifiers in a proper order. (see
Section 7.5)

4. We show how to tune a Waterfall system automatically. We pro-
pose a new method for optimizing classification cascades, tailored to traffic
identification. Our solution finds the choice and order of classifiers that
minimizes the error count, required CPU time, and number of unlabeled
flows. (see Chapter 8)

These novel ideas were presented in publications [65] and [64], both of which
were recently summarized and extended in [66]. Besides the main contributions,
we also highlight a few of the supplementary contributions below:

5. We introduce DNS-Class, a novel TC algorithm based on DNS.
The algorithm immediately classifies a significant portion of Internet traffic
by running text classification on domain names assigned to IP flows. (see
Chapter 6)

6. We review recent works in traffic classification. By surveying 13
publications we show diversity in recent methods and we further motivate
the need for integrating traffic classifiers together. (see Chapter 5)

7. We present tracedump, a novel single application traffic sniffer.
We show how to intercept all Internet traffic of a single Linux process.
(see Section 4.2)

8. We release open source implementations of our proposals. We
publish source code for all methods and tools presented in the thesis.
We also present flowcalc, a software toolkit for analyzing IP traffic and
calculating flow features. (see Section 4.3)

These contributions were published in [63], [62], [61], and on the project website
[59]. They are complementary to the main ideas presented in the thesis. For
example, DNS-Class is used as one of the classifiers for building a Waterfall
cascade, and flowcalc is used for extracting traffic features before the IP flows
enter the classification system. We also highlight that our cascade optimization
algorithm [65] contributes to machine learning by proposing a new method for
optimizing an MCS structure.

We believe the thesis opens a new broad avenue for future research. Waterfall
offers the following benefits to the field of traffic identification:

4

• Dedicated methods for different parts of Internet traffic. For
example, separate classifiers for traditional protocols, P2P, and tunneled
traffic—so that the system as a whole handles 100% of traffic.

• Re-use of existing algorithms. One can use established TC methods
as “black box” modules for identifying well-known traffic and focus only
on new problems in TC.

• Simpler management of software projects. Project team members
can work independently on their modules. The project can easily embrace
the iterative and incremental development model.

• Automatic choice of the best system. Waterfall selects the best
sequence of classifiers from a possibly large pool, so that the performance
for specific network is maximized.

Waterfall addresses the issues described in Section 1.3 that motivate our work:
anticipated growth of the Internet and consequences of the NFL theorem. Thus,
it is an adequate method for building modern TC systems. We hope our work
will contribute the society with a tool for managing the future Internet.

1.5 Outline and methodology

We divide this dissertation into two parts: Part I, which introduces the reader to
traffic identification and machine learning, and Part II, which presents advanced
topics and describes major contributions of the thesis. The first and the last
chapters are independent, as they discuss the whole work.

In Part I, we begin with a formal definition of the traffic classification prob-
lem, which explains the object of our study. We describe the context, history,
state of the art, and speculate on the future of TC (Chapter 2). Then we intro-
duce the reader to machine learning, which explains the basic method of contem-
porary TC solutions. We show how classification works on abstract examples,
we describe supervised ML, and finally we introduce MCS (Chapter 3). Next,
we give a detailed discussion on obtaining and processing real Internet traffic
for training and evaluating TC systems. We present two dedicated software
tools: tracedump and flowcalc (Chapter 4). We finish Part I by describing in
more detail 13 real-world algorithms related to TC. We present a survey of pa-
pers, demonstrating their diversity and thus motivating our work (Chapter 5).
In summary, Part I gives the thesis background; our methodology is basically
referencing literature, describing software, and defining procedures.

Part II presents main thesis contributions. We begin by presenting DNS-
Class, a TC algorithm tracking DNS transactions, which classifies one-third of
Internet traffic, and thus needs augmentation with other algorithms (Chapter 6).
Then, we describe Waterfall, a novel TC algorithm that integrates many classi-
fiers in a cascade (Chapter 7). We finish by presenting an algorithm for optimiz-
ing classification cascades, tailored at the Waterfall architecture (Chapter 8).
In general, Part II adopts an experimental methodology: we state hypotheses
and validate them on real Internet traffic, applying the evaluation procedures
described in Part I. Finally, we confer the thesis statement in Chapter 9.

Last but not least, as we state in Section 1.2 and explain in Section 3.5, our
goal is to present an original method per se. We provide a qualitative compar-
ison between cascade classification and classifier fusion, where a quantitative

5

comparison would also be possible. We believe that confronting a Waterfall
system directly with an equivalent BKS system built off the same base classi-
fiers would be biased, because these two MCS techniques were designed with
different assumptions on the constituent classifiers in mind. Typically, we would
build a Waterfall system off dedicated classifiers (i.e., targeting a portion of In-
ternet traffic), whereas for BKS, we would rather use universal classifiers (i.e.,
not limited to specific protocols). Thus, we leave a quantitative comparison as
out of scope of the thesis: we only compare the features of Waterfall with BKS
as a commentary to our novel method.

6

Part I

Traffic Classification using
Machine Learning

7

Chapter 2

Traffic Classification

2.1 General approach

Suppose we want to analyze the IP traffic flowing through an Internet link, i.e.
all IP packets sent or received on a network interface. By using a decent network
sniffer, we can easily collect the required data, along with basic interpretations
of the packet contents.

Fig. 2.1 presents an illustrative output of the popular Wireshark network
traffic sniffer. In the upper part of the figure we see a list of captured packets
ordered by time, in the lower-right part we see the raw data transmitted on the
wire, and finally in the lower-left part we see the selected packet interpreted
according to Internet standards: IPv4 and TCP protocols [118,119]. As visible
on the example, the selected packet is a TCP datagram sent from IPv4 address
173.194.35.191 to 91.200.174.93, from TCP port number 80 to 29324.

Note that IP packets generally do not carry the name of the protocol or
application in the headers or payload. Thus, in order to classify IP traffic
it is impossible to just read the application name from the packet contents,
even if we know how to interpret the data according to Internet standards.

Figure 2.1: Capturing IP traffic using the “Wireshark” network traffic sniffer.

8

The only universal solution is to guess the protocol by smartly analyzing the
traffic and gaining evidence that support our particular hypothesis. For the
example presented in Fig. 2.1, we could use 3 pieces of information to guess the
application: 1) source port 80 is traditionally linked with the HTTP protocol,
2) source IP address belongs to Google, and 3) ASCII interpretation of the
payload reads HTTP/1.1 200 OK, which is a valid message of the HTTP/1.1
protocol. Thus, we may speculate that the given packet is a response to a WWW
request issued to Google from a modern web browser like Chrome or Firefox.
We used external sources of information to make our inference: the IANA port
assignments [76], the ARIN Whois database [11], and the IETF database of
RFC documents [53]. Note that the presented approach to TC requires timely
knowledge on the Internet and is prone to errors, both of which will supposedly
always be the central problem of TC.

Is our ad-hoc method from the example above reliable for all kinds of Internet
traffic? Unfortunately not, because modern applications often use random port
numbers, Peer-to-Peer (P2P) communication, and encryption: e.g. the Skype
and BitTorrent protocols are much more difficult to identify. Thus, the traffic
characteristics used in our example above—the port number, IP address, and
packet payload—are not universal. Nevertheless, as the thesis will show, there
still exists a large portion of the Internet traffic that is identifiable using simple
methods. For the rest, we need to employ more sophisticated methods.

Let us reconsider analyzing the captured traffic presented in Fig. 2.1. Instead
of looking at individual packets, we will consider IP flows. A flow is the set of
all packets belonging to particular connection, i.e. all packets having the same
destination and source IP addresses, port numbers, and the transport protocol.
The notion of IP flow is useful because it allows us to find more information
on the traffic than using just IP packets alone. For example, Table 2.1 presents
illustrative flow features calculated for a few flows in the captured traffic. The
column “Payloads up and down” gives the payload lengths for the first 5 data
packets in the upload and download directions; the column “Payload statistics”
gives the average payload length and its standard deviation for both directions;
finally, the column “Inter-arrival statistics” gives the same statistics for the time
gaps between consecutive data packets. The “DNS” column is supplemental
and presents the domain name inferred from DNS traffic of the source host

Prot Source
and destination DNS Payloads up

and down
Payload

statistics [B]
Inter-arrival

statistics [ms]

1 UDP 91.200.174.60:27005
178.150.21.167:27013 maso.com.ua 23, 286, 0, 0, 0

23, 138, 0, 0, 0
154, 186

80, 81
38, 38
40, 40

2 UDP 91.200.174.134:21816
109.163.231.236:80 tracker.1337x.org 16, 16, 100, 0, 0

0, 0, 0, 0, 0
44, 48

0, 0
3371, 3268

0, 0

3 TCP 91.200.174.234:34070
173.194.70.188:5228 mtalk.google.com 80, 182, 22, 488, 47

1348, 312, 1348, 312, 43
164, 191
495, 595

109, 38
69, 46

4 TCP 91.200.174.75:60674
69.171.227.27:8883 orcart.facebook.com 80, 182, 819, 22, 310

1438, 1438, 1366, 1438, 1438
118, 195
643, 401

106197, 35709
38697, 3834

5 UDP 91.200.174.20:22906
95.215.62.26:80 tracker.openbittorrent.com 16, 100, 100, 100, 100

0, 0, 0, 0, 0
152, 144

0, 0
1265, 1249

0, 0

Table 2.1: Illustrative IP flow features for the captured traffic.

9

(see Chapter 6): it is another example of traffic inference that surpasses the
boundary of single IP packet analysis.

How these information could help us in classification? The basic observa-
tion is that similar values of flow features will often imply the same application
behind the IP flows, whereas dissimilar feature values suggest different applica-
tions. Thus, it is possible to discover various types of traffic by comparing the
values of the flow features. Moreover, by establishing reference values of the
flow features for a particular application, we can identify its IP flows in whole
traffic by comparing the observed flow features with the reference. The simplest
method in such a case is to manually prepare a set of rules, e.g.

if DNS matches “tracker′′ AND AveragePayload ∈ [16, 250] then

classify(BitTorrent)
endif

Nowadays, the most popular approach to feature-based TC is Machine Learn-
ing (ML): using an algorithm to learn the rules from a labeled dataset without
explicit programming. We will introduce the ML idea and describe its most pop-
ular algorithms in Chapter 3. In general, ML automatically discovers patterns
in flow features and exploits them for TC.

Classifying the traffic using flow features is more universal than matching
particular values in IP packets, because it is difficult to completely eliminate
statistical patterns in the Internet traffic. The state-of-the-art TC methods for
classifying P2P and encrypted applications employ statistical analysis of flow-
based and host-based features, as we will discuss in Chapter 5. However, ML
methods heavily depend on ground-truth—that is, the true labels of IP flows in
the training dataset—which we will cover in Chapter 4.

2.2 The TC problem

The task of TC is identifying the names of Internet protocols or applications
in given IP packets. More formally, if X is the set of n packets one wants to
classify and L is the set of the target traffic classes, then the TC task is defined
by the following:

TC(X) = {y1, . . . , ym} m ≤ n, (2.1)

yi = (Xi, li) Xi ⊆ X, li ∈ L, (2.2)

where yi is an outcome, Xi 6= ∅ is an object, and li is a label : name of the
protocol or application behind IP packets Xi. See Fig. 2.2 for an illustration.
Note that the task of TC involves not only assigning proper labels, but also
grouping packets in objects and extracting traffic features. Each packet must
belong to at least one object:

m⋃
i=1

Xi = X. (2.3)

In an extreme case of classifying single packets we have m = n, but in the
typical case of IP flows being the classification objects we may expect m� n.

For completeness, let us note that instead of processing raw IP packets in
X, it is possible to use abstract forms of traffic information in X that directly

10

Figure 2.2: Illustration of the Traffic Classification problem.

correspond to real IP packets, e.g. NetFlow aggregates [35]. Moreover, we may
choose arbitrary labels if that would better suit the network management goal.
In general the labels are not required to resemble application or protocol names.

That said, let the problem of Traffic Classification be solving Eqs. (2.1),
(2.2), and (2.3) under a given set of requirements and constraints. In other
words, let the TC problem be answering the question on how to solve the TC
task in practice, with minimum resources and maximum performance.

Thus, the actual solution to the TC problem will heavily depend on the net-
work and on the practical goal one wants to achieve. A TC system designed for
a branch office firewall will likely be much different than a TC system designed
for visualizing traffic on a core Internet router.

2.3 Design and taxonomy of TC systems

There are several categories of requirements that one should consider when
tackling the TC problem in practice, for instance:

• Accuracy and scope: e.g. minimum precision and recall, protocols and
applications of interest, resilience to background traffic;

• Available data: e.g. access to packet payloads and traffic samples, sup-
port for anonymized addressing, packet sampling, and asymmetric routing;

• Computing resources: e.g. CPU and energy limits, memory capacity;
• Timing constraints: e.g. support for immediate classification and wire-

speed processing for high traffic volumes;
• Flexibility: e.g. temporal stability of traffic models, reliable performance

across different networks;
• Usability: e.g. overall simplicity, costs of updates, debugging and self-

improvement facilities, source code access.

Obviously, it is often difficult to completely satisfy requirements in one cat-
egory without compromising in the others. One should clearly state the overall
network goal and the target operating environment prior to choosing an existing
TC method or developing a new algorithm.

11

If a particular requirement cannot be satisfied for the whole traffic, the
Waterfall architecture described in the thesis can be used to implement different
sets of requirements for different portions of the Internet traffic. Every module in
the cascade can be designed according to its own set of performance constraints.
In Chapter 8, we will discuss how to automatically optimize such a cascading
TC system for the overall network management goal.

In order to facilitate the process of creating a TC system, let us propose the
following set of design questions that help in specifying the requirements:

1. What is the general context of the TC system being designed? What is
the purpose of the planned TC system and how will it be used?

2. What can be said about the target network link? Should one expect packet
loss, asymmetric routing, or DNS / HTTP traffic being handled through
an internal caching server?

3. What are the constraints on the data one can extract from the traffic?
Is there full access to the packet contents, or only to the packet headers?
What are the privacy restrictions? Is it possible to read the traffic at wire
speed or should sampling be employed instead?

4. What is the expected result granularity? Is it sufficient to know just the
network protocol or the specific software name is required? Should the
system identify the content transported inside protocols and tunnels?

5. What are the timing constraints? Should the system identify each flow
instantly, after the very first few packets, or can the connection last a few
minutes before being classified?

6. What are the expected traffic volume and available hardware resources?
Should the system process monitored traffic in real-time (on-line opera-
tion), or is delayed processing acceptable (off-line operation)?

7. What is the set of protocols of interest? What is the set of the background
applications to be ignored? Is it enough to provide information on whole
traffic, just the 95% of bytes or packets, or just some selected applications?

8. What are the constraints for training the system? Will the system be
trained in a laboratory, or rather in a specific production environment?
Should the model be transferable across different networks?

9. For how long should the system provide accurate results? How the ground-
truth labels will be acquired and updated? How the updated classification
model will be transferred to the production environment?

10. What is the desired accuracy of the system in terms of bytes, packets, and
flows?

Note that the question on expected accuracy is listed last. Although the TC
literature often focuses exclusively on the metrics that measure the classification
accuracy, these metrics in practice heavily depend on the issues considered in
the questions 1-9 above. Thus, one should not compare the classification per-
formance of various TC methods before specifying the context of the system.
For an alternative set of questions for choosing a TC method, see [114].

Let us also introduce the notion of taxonomy for TC. Several papers sug-
gested various ways to categorize TC algorithms depending on their character-
istics: [28, 40, 70, 85, 86, 105, 114, 145]. However, the literature lacks a common
taxonomy to describe the state of the art in TC. The most important works
describe the existing TC algorithms in terms of the technique, accuracy, and

12

traffic features [28,105], but such a simple taxonomy is often too coarse-grained.
Instead, in [85] Khalife et al. present a multi-level taxonomy, which was

used in a survey of methods for encrypted TC [147]. The authors propose to
characterize each classification method at three different levels—classification
input, technique, and output—in a hierarchical taxonomy:

• Classification Input:
– traffic payload
– traffic attributes: packet-level attributes (e.g. packet headers, sizes,

inter-arrival times), flow-level attributes (e.g. flow size, duration),
host-level attributes (e.g. number of connections and opened ports),
and host community-level attributes (e.g. graph metrics: connection
degree, graph diameter)

– hybrid & miscellaneous

• Classification Technique:
– payload inspection
– simple statistical: basic statistical, heuristics, profiles
– statistical ML: unsupervised, supervised, semi-supervised, reinforce-

ment learning
– graphical: graphlets, motifs, social networks
– hybrid & miscellaneous: content-aware, distributed, multi-classifiers

• Classification Output (Outcome):
– traffic classes: traffic cluster (e.g. bulk, small transactions), appli-

cation type (e.g. game, browsing, chat), application protocol (e.g.
HTTP, HTTPS, FTP), application software (e.g. specific BitTor-
rent client), fine-grained class (e.g. Facebook chat, Google search,
Skype call), anomaly

– traffic objects: packet, flow, host, host community

Let us conclude that solving the TC problem is complex and depends on the
overall goal, but the design process can be broken into several simpler issues.
Similarly, the Waterfall architecture presented in the thesis allows dividing the
complex TC implementation task into several subproblems.

2.4 Practical applications

Historically, the first practical applications of TC were intrusion detection [67]
and traffic prioritization [127]. However, nowadays TC—and in general, vari-
ous traffic analysis methods—are used for many different purposes related to
network management and the Internet, for example:

• Internet measurements, e.g. tracking usage of Internet applications [81];
• Traffic visualization, e.g. plotting main traffic components in time [54];
• Multipath routing, e.g. using cheaper links for bulk download traffic;
• Traffic shaping, e.g. implementing QoS [24,132];
• Data security, e.g. disallowing tunnels and cloud storage applications;
• Firewalls, e.g. blocking malware and spam [95,113];
• Traffic modeling, e.g. for collecting traffic samples;
• Marketing, e.g. profiling Internet users [115];

13

• Mass surveillance, e.g. the NSA XKeyscore system [71,107].
• Internet censorship [49]
• Society manipulation [94]

We highlight that the last few applications, arguably unfortunate, were not
the original motivation for TC. In fact, TC per se does not imply surveillance
of any kind, and can be used for objectively good purposes, e.g. improving
Internet reliability and security. However, it is the decision and responsibility
of the TC designer why a particular system is created.

Apart of the government agencies, TC is used by various scientific and en-
gineering organizations, mainly as the fundamental tool for Internet research
[25,96,102,140,142]. Some ISPs use TC for classifying users into various groups
depending on their interests and browsing habits, e.g. Orange Poland asks for
permission on monitoring the IP traffic of an individual mobile Internet user for
marketing purposes [126].

Various commercial companies and open source projects offer products im-
plementing TC. Either in form of dedicated hardware—e.g. from Cisco [33], Ju-
niper Networks [80], PaloAlto Networks [110], SolarWinds [131], Plixer [116], Al-
lot Communications [7]—but also as specialized software—e.g. from ipoque [78],
nTop [109], Bro IDS [20], Suricata IDS [133], Tstat [138]). Recently, TC has
been offered as Software as a Service (SaaS) by Talaia [136].

14

Chapter 3

Machine Learning

In the previous Chapter, we introduced TC, giving examples of its applications,
presenting intuitions and definition of the TC problem, and proposing some
design methodologies. In this Chapter, we introduce foundations that underlie
the recent developments in TC: the field of Machine Learning (ML).

3.1 Introduction

In general, ML allows for programming computers with data instead of pro-
grams. It aims to develop techniques by which experience leads to improved
performance on computing tasks [43]. T. Mitchell defined ML as consisting of
algorithms that improve their performance P on some task T through the experi-
ence E; a well-defined ML problem is thus given by < P, T,E > [98]. That said,
applying ML for TC means using algorithms that improve their performance P
on solving the TC problem T using labeled samples of traffic E (see Section 2.2
for details). TC uses a branch of ML called Pattern Recognition (PR), which
aims at automatic recognition of complex patterns in data [17].

Let us consider the plot given in Fig. 3.1: it presents real data extracted
from IP packets of Skype (red points) and Google Hangouts (blue points), both
of which are popular computer programs for videoconferencing. The plot vi-
sualizes the dependency between inter-packet time gaps (horizontal axis) and
payload sizes (vertical axis), which exposes apparent differences in the IP traffic
generated by these programs. Now, in order to gain some intuition, let us state
that the goal of ML is coloring the plot presented in Fig. 3.1, but with all of
the points initially black. In general, the points can represent any object, take
arbitrary values, and lay in a d-dimensional space, d ∈ N.

One of the main approaches to solving such a problem, called supervised
learning, requires prior samples of how the plot should be colored. In this
case, the algorithm classifies a particular point by comparing its location to the
knowledge extracted from the training data, e.g. using the typical areas for blue
and red. The other prominent approach, called unsupervised learning, operates
without prior knowledge. Instead, in such a case the computer discovers intrinsic
structures in the data, e.g. clusters with different densities.

For an example of supervised learning, consider Fig. 3.2, which presents the
outcome of using our dataset for training the k-Nearest Neighbors (k-NN) al-

15

0 5000 10000 15000 20000 25000
Inter-packet gap [us]

0

50

100

150

200

250

Pa
ck

et
 s

iz
e

[B
]

Skype vs Hangouts: traffic comparison

Skype
Hangouts

Figure 3.1: Comparison of voice call traffic in Skype vs. Google Hangouts.

gorithm, a popular ML method that exploits the closest data points. Again,
the points correspond to IP packets of Skype and Hangouts, but now the back-
ground color visualizes decision boundary, i.e. rules for classification of future,
yet unseen data. Note that the decision boundary is not perfect in a few places,
e.g. for the area close to the center, it is impossible to completely separate the
blue points from the red ones in the training data. However, the simple k-NN
algorithm is often good enough and was successfully applied in TC, e.g. [30].

For an example of unsupervised learning, consider Fig. 3.3, which presents
4 intrinsic structures found in the data, without any prior knowledge. Note
that now there is no direct correspondence between the color and the traffic
type. Instead, the color indicates that a given point belongs to a cluster that is
relatively coherent and separated from the rest of the data. Note that clustering
algorithms do not provide final answers, but their results help in exploring
unlabeled datasets and developing more sophisticated tools, e.g. [72].

3.2 Supervised learning

Supervised learning infers functions from labeled training datasets [100]. Let
x ∈ X denote an input vector and y ∈ Y denote its true output label (target). X
and Y are arbitrary, but if Y is discrete and finite, we solve a classification task,
whereas if Y is continuous, we solve a regression task. A supervised learning
algorithm finds a function f : X → Y such that

f(x) = y, (3.1)

which usually is difficult to satisfy for arbitrary x outside the training dataset.
Thus, let g : X × Y → R be a scoring function that quantifies how well the

16

Figure 3.2: k-NN supervised learning algorithm: the original training data
(points) vs. the decision boundary learned from the data (background).

output y matches the input x. In such a case, f(x) is given by

f(x) = arg max
y

g(x, y), (3.2)

which selects the y that maximizes the scoring function. As an example, consider
a probabilistic scoring function g(x, y) = P (y|x), which makes f select the most
plausible cause y given the evidence x. However, in general g can be arbitrary.

Note that if we consider x and y as random variables, then supervised learn-
ing assumes x and y to be statistically dependent. Otherwise, any experience
learned from the training dataset would be useless: the system would learn co-
incidences instead of fundamental rules. In other words, it is impossible to find
patterns in chaos.

In real-world ML problems, one rarely starts with data in the abstract form
of (x, y) pairs. Thus, a typical design process of an ML system starts with
adequate sensing of real-world phenomena and representing them with numbers.
For example, if one wants to build a face recognition system, then the first step
would be to capture human faces with a digital camera, normalize for different
lightning and postures, convert to grayscale, and rescale the pictures to common
resolution of w × h pixels. Next, each real face F would be described with a
(wh)-dimensional feature vector of numbers xi representing the light intensities
at consecutive pixels in the face image:

F → x = {x1, · · · , xi, · · · , x(wh)}, 0 ≤ xi ≤ 1. (3.3)

In ML, the process of converting real-world phenomena to raw data is known
as sensing (e.g., capturing a digital picture of F); the process of detecting and
normalizing objects in the raw data is known as segmentation and grouping (e.g.,
face detection); finally, the process of converting objects to feature vectors is

17

0.0 0.2 0.4 0.6 0.8 1.0
Inter-packet gap (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ck

et
 s

iz
e

(n
or

m
al

iz
ed

)

Skype vs Hangouts: k-means clustering (k = 4)

Figure 3.3: Clustering using the k-means unsupervised learning algorithm: four
clusters found in the input data without using any prior knowledge.

known as feature extraction (e.g., producing the vector x) [17]. All these phases
have a fundamental impact on the performance of the whole ML system, but are
highly domain-specific. In TC, sensing and segmentation deal with capturing
and grouping IP packets, whereas feature extraction deals with reducing great
amounts of traffic data down to just the essential features. We will further
discuss these topics and show examples in Chapters 4 and 5.

The second step in the design process is choosing the method for making
decisions (the g function in Eq. 3.2). In a well-known survey on statistical
PR, A. Jain et al. list four best known approaches [79]: template matching,
statistical classification, syntactic or structural matching, and neural networks.
The statistical approach is widely used in TC: we depict its branches in Fig. 3.4.
However, as the scoring function can be arbitrary, let us mention decision trees
as an example of a non-metric approach that goes beyond statistical models [17].

In statistical PR, we consider x, y as random variables. In Fig. 3.4, we show
various approaches to statistical PR (which also covers unsupervised learning
for completeness). In general, the choice of the PR algorithm depends on how
much we know about x, y. If the Conditional Probability Densities (CPDs) are
known, then we apply the “optimal” Bayes decision rule. However, usually the
CPDs are not known a priori and we have to estimate them from the training
dataset. In such a case, if the form of the CPDs is known (e.g. Gaussian)—but
the parameters are missing (e.g. mean and variance)—then we only deal with
a parametric decision problem: we replace the unknown parameters with their
prior distributions. On the other hand, if the form of the CPDs is unknown, we
either estimate the density functions from data (e.g. using kernels), or we di-
rectly construct the decision boundary, as in Fig. 3.2 for the k-NN algorithm [79].
The process of building the model from data is called training.

18

Class-Conditional
Densities

KnownUnknown

Bayes Decision
Theory

Supervised
Learning

Unsupervised
Learning

Nonparametric ParametricNonparametric Parametric

amount of information0

Figure 3.4: Approaches in statistical Pattern Recognition (based on [79]).

3.3 Training and testing

The common element of every supervised learning algorithm is that it needs
quality training and testing data, which often is a scarce resource. For exam-
ple, a common problem for research in TC is that ISP companies rarely share
IP traffic data due to customer privacy and law regulations. Another impor-
tant problem is reliable ground-truth data, i.e. knowledge on the true label for
each feature vector. In TC, the common technique for obtaining ground-truth
information is using an existing, state of the art method.

x1

x1

x2

x1

x2

x3

d = 1 d = 2 d = 3

Figure 3.5: The curse of dimensionality. Adding dimensions increases the need
for training data exponentially. Colors represent the target class (based on [17]).

The amount of data needed for training grows rapidly with the number
of features one wants to use. In general, the number of training instances
grows exponentially with the number of dimensions in the feature vectors [17].
Thus, using more features with the same training dataset may degrade the
performance of an ML system. This paradoxical phenomenon is known as the
curse of dimensionality or the peaking phenomenon. In order to demonstrate
it, let us consider a simple look-up classifier—that is, let f in Eq. 3.1 represent
fetching the cell x from a d-dimensional table X. If we divide each dimension
in X into n regular cells, we end up with nd cells total. Thus, in order to fill

19

Figure 3.6: Over-fitting: too intense training can cause the ML system to mem-
orize training dataset instead of learning the general rules behind it.

each cell in X, we would need at least the same number of training instances.
See Fig. 3.5 for an illustration. In practice, a common rule of thumb is to use
at least ten times more training instances per class than the number of features.
The more complex the learning model, the higher should this ratio be to avoid
the peaking phenomenon [79].

On the other hand, too much training can sometimes harm the performance
of an ML system. In Fig. 3.6, we illustrate the dependence of performance on
“training intensity”, i.e. on a general concept that represents model complexity
or the number of training cycles. The picture shows that by more intense
training we make the training error smaller, but after some threshold the system
starts to memorize the training dataset instead of learning the rules that underlie
it. That is, the system becomes unable to generalize and to give proper outputs
for the testing set. We call this phenomenon over-fitting and usually recognize it
by good performance on the training data, but bad performance on the testing
data. On the other hand, if both error rates are high, then the system likely
under-fits the data and a more complex model is needed. For optimal operation,
we should limit the training to the point in which both error rates are low.

A common technique for evaluating ML systems is cross-validation [17],
which improves reliability of the performance estimates. In this approach, the
whole dataset is randomly split into N subsets (often N = 10), and then N−1 of
the subsets are used for training, while the remaining subset is used for testing.
The procedure is repeated N times for every possible choice of the testing subset,
and the performance metrics are then averaged. This reduces the chances for
possible over-fitting, as the system is evaluated N times on different data.

3.4 Performance metrics

There are many popular metrics that measure the performance of a classification
system [86]. The simplest is accuracy, which gives the number of properly
classified instances, usually given as a ratio vs. the number of all instances. The
more likely the system is to give the proper answer, the higher is its accuracy.
However, this simple metric neglects the types of errors made during evaluation,
so in practice more sophisticated measures are used: either the pair of True

20

Spam Legitimate

Spam True Positive
(Correct)

False Negative
(Type II error)

Legitimate False Positive
(Type I error)

True Negative
(Correct)

Message type
(ground-truth)

Classification result

Table 3.1: Possible types of outcome when evaluating a spam detector.

Positives and False Positives, or the pair of Precision and Recall.
In order to define these metrics, consider an example of a spam filter, which

is a binary classification problem. Tab. 3.1 presents possible types of outcome
of the system, depending on the kind of input message. The table defines
names for two different types of correct answers—True Positives (TPs) and True
Negatives (TNs)—and the names for two different types of incorrect answers—
False Negatives (FNs) and False Positives (FPs). The percentages of these types
of answers are often used as performance metrics, e.g.:

%TP =
TP

TP + FN
· 100%, %FP =

FP

FP + TN
· 100% . (3.4)

Intuitively, a high False Negative rate for a spam filter means the user would
receive many unsolicited e-mails, while high False Positive rate means the user
would loose many legitimate e-mails (due to invalid classifications as spam).

Similarly, precision and recall are defined as:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (3.5)

High Precision of a spam detector means that for all messages classified as
spam, high proportion of them are truly unsolicited (which is known a priori
from the ground-truth). However, achieving high Precision is easy if we neglect
Recall, that is, we just skip the difficult cases. For this reason, Recall measures
how many of the unsolicited messages known a priori were classified as spam.
Thus, one should always consider Precision together with Recall, and optimize a
classification system accordingly. For some applications, like intrusion detection,
an overly cautious system is acceptable (trading Precision for Recall); for other
applications, like traffic sampling, missing some IP flows might be tolerable
(trading Recall for Precision).

Precision and Recall have an accompanying metric of F-measure (or F1-
score) that combines both of them using a harmonic mean:

F-score = 2 · Precision · Recall

Precision + Recall
. (3.6)

The F-measure is high if and only if both Precision and Recall are relatively
high. Thus, it is a convenient way to express the performance of a classifier
using a single quantity.

21

3.5 Multiple Classifier Systems

It is possible to combine many different classifiers to make them work together
on solving classification tasks [88]: such systems are called Multiple Classifier
Systems (MCS), combining classifiers, or classifier ensembles. Furthermore,
MCS can be divided into Classifier Fusion, where all of the constituent classifiers
are actively used and their final outputs are combined, and Classifier Selection,
where the output of only one of the classifiers is selected as the ensemble output.
Figure 3.7 illustrates the MCS idea.

For example, in Classifier Fusion—similarly to the democratic system—one
can collect the outputs of a pool of classifiers, and choose the most popular class
label as the final decision (the Majority Vote technique). On another hand, in
Classifier Selection—similarly to a council of ministers—the classifiers can have
their areas of competence, and be used only for the subset of tasks that match
their capabilities (the Classifier Selection technique).

Combiner

Input

Selector

Input

Classifiers

Classifiers

Final decision

a) Classifier Fusion b) Classifier Selection

Figure 3.7: Multiple Classifier Systems: Fusion (a) and Selection (b).

Note that one might argue that, in an MCS system, the constituent classi-
fiers are just fancy features used by an ordinary classifier built on top of them.
For instance, neural networks can in theory approximate any function with ar-
bitrary precision with a finite set of model parameters [148]—thus, we could
consider the neurons as simple base classifiers, and the whole network as an
ensemble. However, in practice we need a simpler tool than a huge neural net-
work with multitude of parameters, i.e. we need tools that are easier to manage
and interpret. Thus, MCS helps us by breaking complex tasks into smaller,
manageable blocks: it is often easier to combine many acceptable solutions of a
classification problem than to find the optimal solution that exploits all of the
data features at once.

There are three fundamental reasons for why classifier ensembles can perform
better than any of their constituent base classifiers [42,88]:
• Statistical Reasons. In case there is little training data for a problem,

some algorithms may produce suboptimal models in each run (e.g., k-NN)

22

or for each subsample of the input (e.g., decision trees). By averaging
the classification outputs of these models, we are minimizing the bias
introduced by poor training data.

• Computational Reasons. Some training algorithms, e.g. error back-
propagation in neural networks, are only guaranteed to converge to a
local minimum. Thus, averaging the models trained from different start-
ing points is more likely to approach the global minimum than using any
of the base classifiers alone. Moreover, some problems require data from
quite different sources, e.g. activity recognition of a smart-phone user may
require analyzing data from an accelerometer, a GPS chip, and a micro-
phone. It is easier to process these data using three separate classifiers
and then combine their outcomes rather than digesting multi-modal data
in a single algorithm.

• Representational Reasons. In many cases it is impossible to describe
a complex decision boundary for a classification problem with a simple
model, e.g. represent a polynomial function with a single linear function.
By averaging several simple models in an MCS system, one can represent
more complex decision boundaries.

In order to design and describe an ensemble classifier, one needs a taxon-
omy. In [122], Rokach proposes an MCS taxonomy that considers 5 dimensions:
Combiner Usage, Classifier Dependency, Ensemble Diversity, Ensemble Size,
and Cross-Inducer. This taxonomy was interpreted by Kuncheva in [88], which
we reproduce below with minor adaptations:
• Output Combiner (Selector):

– Not specified
– Specified: Non-trainable, Trainable, or Meta-classifier

• Base Classifier Dependency
– Independent training
– Dependent training (incremental)

• Ensemble Diversity
– Training base classifiers on different parameters
– Resampling the training data
– Partitioning the training data (horizontal / vertical)
– Different target class labels
– Different base classifiers

• Ensemble Size
– Fixed in advance
– Selected while training
– Pruning (overproduce and select)

• Universality
– Specified base classifiers
– Any base classifiers

In this thesis, we present a cascading classifier for Internet traffic, which
belongs to the Classifier Selection branch of MCS systems. In terms of the pre-
sented taxonomy, our classifier has the following features: non-trainable selector
(but programmable), independent training of base classifiers, diversity through
different classifiers (operating on vertically partitioned data), ensemble pruned
through optimization, and applicability to any base classifiers. Below, we give
illustrative examples for Classifier Fusion and Classifier Selection, describing the
methods in terms of the presented taxonomy.

23

3.5.1 Behavior Knowledge Space

One of the prominent examples of Classifier Fusion is Behavior Knowledge Space
(BKS), introduced by Huang and Suen in [75]. It belongs to a larger group
called multinomial methods, where we look for the class label y with the highest
posterior probability P given ensemble answers s. Let D = (D1, . . . , DL) be
an ensemble of L base classifiers that classify an input feature vector x, giving
L answers s = (s1, . . . , si, . . . , sL), si ∈ Y . Then, in multinomial methods, we
look for

f(x) = arg max
y

P (y|s), (3.7)

which is similar in spirit to Eq. 3.2, but introduces an intermediate layer of
ensemble answers s. In BKS, the optimization is realized using a look-up table
(the BKS table), which is created during a training phase, prior to ensemble
operation. Fig. 3.8 illustrates the classification algorithm.

Input

D1

D2

D3

D4

s1 s2 s3 s4

s

Output

y

BKS Table

Figure 3.8: Behavior Knowledge Space: the answers s from an ensemble D are
translated using the BKS look-up table into the final class label y.

The BKS table is learned using a labeled dataset: each sample is classified
using the base classifiers, their answers s are collected, and the ground-truth
label is stored under the table cell s. The most frequent label in a cell wins; in
case of a tie, any of the most frequent labels can be chosen. If an empty cell
is found in the BKS table during later operation, the class is chosen using a
majority vote or randomly.

In terms of the MCS taxonomy, BKS has the following characteristics: train-
able combiner, independent base classifiers, ensemble diversity through different
classifiers (possibly with different target classes), fixed ensemble size, and ap-
plicability to any base classifiers. A notable feature of BKS is easy translation
between various sets of class labels: as visible in Fig. 3.8, the ensemble output y
uses a different set of labels (colors) than any of the base classifiers. For example
of vehicle classification, each base classifier could analyze only a certain feature
of a vehicle (e.g., color, height, number of wheels), while the BKS combiner
could give the final class (e.g., car, bike, truck).

24

3.5.2 Cascade Classifiers

Cascade Classifiers (CC) belong to the family of Classifier Selection and—by
their very nature—are radically different than BKS. Instead of querying all
base classifiers Di ∈ D for input x, CC queries the classifiers one by one—i.e.,
D1, then D2, then D3, etc.—and the first that answers with a class label for x
wins. If a classifier Di is unable to make a reliable decision, for instance due to
a tie between two classes, the input x is conveyed onward to the next classifier
Di+1. In case of no more classifiers, x leaves the cascade without a label.

The original publication by E. Alpaydin and C. Kaynak [8] that introduced
CC describes a two-stage system, where the first classifier learns the general
rule, and the second classifier learns the exceptions. Nowadays, the literature
treats CC as a more general MCS concept that belongs to Classifier Selection,
where a cascade can consist of many base classifiers [1,32,88]. Fig. 3.9 illustrates
CC in this context. In Classifier Selection (a), the problem space is divided a
priori into many competence areas, and each input x is assigned to exactly one
classifier Di according to the matching area. In Cascade Classification (b), each
input x can enter many classifiers, but only the one that is certain about the
label will make the final decision.

D2

D1

D3

D4

D1 D2 D3 D4

a) Classifier Selection

b) Cascade Classification

x1

x2x2

x1

Figure 3.9: Cascade Classification (b) in the context of Classifier Selection (a).
The spots represent inputs x, their color shows the target class.

The differences between CC and BKS have deep consequences in the design
of their base classifiers: in CC, they need to support the “reject” option (the
“unknown” label)—in order to pass x from Di to Di+1—and they need to
have a minimum rate of False Positives—in order to avoid mistakes at all costs.
Thus, any quantitative comparison between BKS and CC systems comprising of
same base classifiers seems unreasonable, as these MCS techniques have different
principles of operation. In BKS, a base classifier that is accurate 75% of time
can positively contribute to the ensemble, while in CC such an element would
ruin the performance. On the other hand, CC is computationally faster than
BKS by design, as it runs all classifiers only for a fraction of inputs.

25

In terms of the MCS taxonomy, CC in general has non-trainable selectors,
independent or dependent training (similar to boosting [88]), diversity through
different base classifiers (parameters, samples, partitioning, etc.), flexible en-
semble size (with various techniques for optimization), and applicability to any
base classifiers that support the reject option.

We will revisit the topic of Cascade Classification again in Chapters 7 and 8
of the thesis, where we describe the Waterfall Traffic Classifier and give a method
for optimizing its performance.

26

Chapter 4

Datasets and Tools

So far, we discussed the task of Traffic Classification (TC) and showed that
Machine Learning (ML) is a suitable tool for solving the TC problem. However,
in practice one needs datasets and software tools in order to develop and properly
evaluate TC methods. Thus, in this chapter, we discuss how to obtain datasets
of raw IP packet traces and we present relevant software tools that convert these
raw datasets into collections of classification objects.

4.1 Introduction

The process of acquiring and processing datasets heavily depends on the design
of a particular TC system, as discussed in Chapter 2. Again, a TC system
designed for a branch office firewall will likely require different data than a TC
system designed for visualizing traffic of a core router. Whereas raw IP packet
capture files may be suitable in the former case, less detailed information may
be more efficient for the latter case, e.g. NetFlow objects.

Other dataset requirements come from the ML field. In Chapter 3, we
introduced the concept of the curse of dimensionality, which causes the need
for large amounts of data if one wants to evaluate many features in IP traffic.
Moreover, supervised learning requires accurate ground-truth labels on each
classification object, which is not readily available in the IP traffic itself.

Thus, each TC system requires large datasets of adequate IP traffic objects
labeled with ground-truth information. In practice, such datasets are difficult
to obtain, creating one of the largest barriers in TC research [40, 124]. Large
Internet carriers rarely share IP traffic data outside of their organization due
to privacy and security of their customers. Moreover, sharing data generates
operational costs of additional engineering work and data storage. Still, some
Internet carriers make their IP traffic available to affiliated researchers under
a Non-Disclosure Agreement (NDA). This allows select scientists to work on
high-quality data, but limits credibility of their findings—as they cannot be in-
dependently reproduced—and divides the TC research community by excluding
non-privileged scientists.

Some researchers emphasized the need for public datasets that could be used
as a common reference for evaluating TC methods [40,124]. Unfortunately, as of
the time of this writing, TC still lacks even a single canonical dataset, contrary

27

Dataset Year Payload? Anon.? GT? Diverse? Large?
MAWI [96] 2017 X X X
CAIDA [26] 2016 X X X
UPC-CBA [23] 2015 X X
WAND [143] 2011 4 bytes X X X
UNIBS [50] 2009 X X X
Tstat [141] 2008 X X X

Table 4.1: Publicly available TC datasets. Column “Year” gives the last up-
date, “Payload?” marks availability of packet payloads, “Anon.?” marks IP ad-
dress anonymization, “GT?” marks presence of ground-truth labels, “Diverse?”
marks collection of diverse applications, and “Large?” marks large dataset size.

to the other computer science areas that depend on ML, e.g. Optical Character
Recognition (OCR), which has the MNIST database of handwritten digits [89].
However, a few public TC datasets exist, but are of limited applicability and
thus do not sufficiently solve the problem of no common reference.

We list some of the publicly available TC datasets in Table 4.1. Their usabil-
ity is limited mainly due to: (1) cropped packet payloads, (2) anonymized IP
addresses, (3) no ground-truth information, (4) poor protocol diversity, (5) small
dataset size, (6) old age, or any combination thereof. The limitations (1)-(3)
may cause a dataset to be inadequate for supervised learning, which requires
the target labels for training. Having neither the packet payloads (1) nor the
real IP addresses (2) makes it impossible to obtain the ground-truth information
if it is missing (3). Still, such datasets may be useful for unsupervised traffic
analysis. The limitations (4)-(6) may cause a classification model trained on
such a dataset to be inadequate for operation in modern, real-world networks.

However, datasets representing just a few protocols, or even a single applica-
tion, may be applied to independently develop a specialized classifier that will
later be integrated in a larger Waterfall TC system. Thus, in the next section
we present a software tool for capturing packet traces of a single computer pro-
gram running under the Linux operating system, which was originally published
in [61]. Our overall goal here is to allow the researcher to automatically gen-
erate and collect packet traces of select network applications using Graphical
User Interface (GUI) automation tools, such as Sikuli Script [60,130,156].

4.2 Tracedump: single application sniffer

One of the most popular network monitoring tools are packet sniffers, i.e. com-
puter programs that intercept IP packets sent or received on a network host.
The output of a sniffer gives insight into how exactly the network operates, and
thus can be useful for solving connectivity issues. For example, in order to diag-
nose a routing problem, one would observe IP packets on the ingress and egress
interfaces of an Internet router: if the traffic is visible on the ingress interface,
but not on the egress one, then the router is not forwarding IP packets that
enter the network.

While packet sniffers can monitor network interfaces, it is particularly dif-
ficult to capture only the packets belonging to a given application, i.e. the
packets sent and received by a single process running on a particular host. This

28

is because packet sniffers were designed to be deployed on Internet routers, i.e.
hosts that rarely generate their own IP traffic. Thus, a typical sniffer can easily
monitor a network interface, but lacks sufficient granularity to inspect only a
local process. Unfortunately, such a design influenced the operating systems:
for instance, the Linux kernel lacks apparatus necessary for straightforward im-
plementation of such a sniffer.

The ability to monitor just a single application is important for training
TC systems, which need traffic datasets annotated with ground-truth labels.
By employing a single application packet sniffer, the problem of ground-truth
is mitigated, as the name of the application is known by design. In order
to obtain an adequate quantity of training data, a single application sniffer
may be combined with automation tools and run the analyzed application for a
sufficiently long time. We acknowledge that synthetic traffic traces are of limited
versatility, but may be important for development of specialized TC methods,
e.g. Waterfall modules.

In this section, we present tracedump: a novel IP packet sniffer that in-
tercepts packets belonging to a single application process. It employs several
techniques in order to mitigate the lack of necessary mechanisms in the Linux
kernel, particularly the ptrace(2) [92] system call and the BPF socket filter [97].
The sniffer attaches to a given process and monitors its system calls related to
communication with the Internet. A list of local TCP and UDP ports is con-
structed on the fly and used for filtering out all the traffic not belonging to the
application under interest.

4.2.1 Related works

The most prominent packet sniffer is tcpdump, which is based on the accompany-
ing libpcap library [137]. Originally written in 1987 at the Lawrence Berkeley
National Laboratory, it was published a few years later and quickly gained user
attention. It runs on most UNIX-like operating systems—e.g. Linux, BSD,
Solaris—and on Windows. Since its inception, tcpdump was cited by numerous
scientific papers in the field of computer networks and is indeed the standard
utility for capturing IP traffic. It established the PCAP output format, which
is the most popular file format for storing IP packets, still being extended to
support new functionality [151]. The tcpdump sniffer features a filtering mech-
anism, which allows the user to easily capture only the packets satisfying given
criteria, e.g. TCP packets with the destination port equal 80. Unfortunately,
the filtering mechanism does not support selecting the packets of a single appli-
cation. For example, it is impossible to capture all traffic of a P2P application
using port-based filtering, because P2P software uses dynamic port numbers.

Wireshark is also a very popular packet sniffer featuring a full-fledged GUI
with lots of advanced features [152]. However, similarly to tcpdump, it does not
allow tracing IP traffic of a specific process. Another packet capture software,
libtrace [5], aims at addressing the weaknesses of libpcap. It supports many
input methods and formats—and provides a very good performance at the same
time—but none of them can capture the traffic of a single application.

In the field of TC, there are two notable software utilities for capturing
traffic. F. Gringoli et al. in [73] present a system for collecting traffic traces
that annotates IP flows with ground-truth labels. It works as the following:
first, each host in the network uploads full list of its connections and their

29

application names to the border router; second, the border router captures
the IP traffic flowing in and out of the network. Finally, the resultant traffic
trace is annotated with appropriate ground-truth data using the connection lists
uploaded by the hosts. Szabó et al. proposed a similar approach for Windows
machines in [134]. However, these approaches do not solve the problem of single
application diagnosis in the strict sense. First, they require a separate post-
processing stage, which blocks real-time streaming operation; second, they may
loose short-lived IP flows due to the non-zero time needed for uploading the
list of active connections. Thus, these methods generally do not record DNS
query-response traffic made by the monitored applications.

4.2.2 Problem analysis

Let us analyze—in a simplified manner—how a Linux application initiates a
TCP connection and sends data to a distant host. The operating system pro-
vides an Application Binary Interface (ABI) for Internet communication by
means of the system calls socket(), connect(), and send(). Thus, the ap-
plication first calls the socket() function in order to get a unique handle for
the connection. Then, the connect() function is called with the address of the
remote peer, and finally the send() system call may be used to send the data.

There are two crucial issues one needs to realize when constructing a packet
sniffer of a single application. First (A), the application does not handle con-
struction of IP and transport protocol headers—it is the task of the operating
system. Hence, it is not enough to monitor the data passed as arguments to
send() in order to collect IP packets. Second (B), a call to connect() may
generate packets before the call returns. Thus, a packet sniffer must react to
connect() before it is executed in the kernel.

Unfortunately, it is quite hard to mitigate these problems using existing
mechanisms present in the Linux kernel. One of the possible ways to write
such a sniffer would be to extend the Linux struct sk buff structure with a
pid member holding the process ID number. For outgoing packets this would
be trivial, but for incoming packets it could be quite troublesome. However,
such approach would constrain the scope of our solution, due to the necessity
to patch and recompile the operating system kernel.

It is possible to take care of (A) and (B) in user space, without modifying
the kernel. A straightforward procedure would be to exploit the dynamic linker
ld.so [90] in order to provide wrapper functions for system calls responsible
for communication with the Internet. However, this would fail for statically
compiled program binaries. Instead, our proposal makes use of the ptrace()

process tracing facility.

4.2.3 Proposed solution

Tracedump is divided into three functional modules, implemented as threads:
ptrace, pcap, and garbage collector (GC), depicted in Fig. 4.1. The ptrace
module attaches to all threads of a given process, and using the Linux ptrace()

function it maintains a list of all local TCP and UDP ports that the application
is using. The pcap module operates like an ordinary packet sniffer, intercepting
all IP packets on all network interfaces, at the kernel level (recall (A) from the
previous section). Whenever the port list changes, a BPF filter is immediately

30

Figure 4.1: Architecture of tracedump. The port list is constructed by observing
the kernel-userspace communication and is used for raw IP packet capture. The
garbage collector (gc) thread periodically cleans up the list.

applied on the pcap sniffing socket, so that the packets not belonging to the
monitored application are ignored. The BPF filter is updated before the kernel
executes the original system call (recall (B)). The task of the garbage collector
module is to detect ports that are no longer used. Each minute it reads the
list of all active system connections, and it cleans up the list constructed by the
ptrace thread.

The ptrace thread traces just three system calls: bind(), connect(), and
sendto(). For the proposed architecture, we verified this is enough not to
loose any IP packet—by means of Linux kernel analysis and examination of the
usual path a user-space program takes to setup an Internet connection. For
UDP and TCP servers, the application needs to call bind() to setup the local
port number. For client programs, it will either call connect() or sendto().
In such a case, it may happen that the local port number is unspecified, thus
the kernel will perform an “autobind” operation and allocate an ephemeral
port automatically. However, due to (B), this is an undesirable situation, so
tracedump splits the system call in such a case. First, it forces the process
to call bind() with the port argument set to 0, i.e. it requests the automatic
allocation to be executed. Then, the BPF filter is updated with the assigned
port number, and finally the original call—either connect() or sendto()—is
re-started. This is realized using machine code injection into the stack area of
the monitored process.

The pcap thread attaches to the kernel using a PF PACKET [91] socket, and
writes captured packets to disk in the PCAP [151] file format. Whenever the
list of local ports is changed, the BPF filter code is immediately rewritten and
sent to the kernel using the setsockopt() system call.

A näıve solution to tracking the local port numbers that the application no
longer uses would be to intercept the close() system calls. Unfortunately, using
this technique alone is not sufficient to distinguish a close() call that effectively

31

1 root@pj f :˜# tracedump c t o r r e n t ubuntu−11.10. i s o . t o r r e n t
2 p c a p i n i t () : Writing packets to dump . pcap
3 (. . .)
4 Total : 673 MB
5 Creat ing f i l e ”ubuntu−11.10− a l t e rna t e−i 386 . i s o ”
6 Press ’h ’ or ’ ? ’ f o r he lp (d i sp l a y / c o n t r o l c l i e n t opt ions) .
7 | 3/0/754 [1346/1347/1347] 672MB, 0MB | 2157 ,0K/ s | 1724 ,0K E: 0 , 1
8 Download complete .

Listing 4.1: Using tracedump to capture BitTorrent traffic. A BitTorrent client
ctorrent [39] is used for downloading a CD disk ISO image.

Figure 4.2: Characteristics of BitTorrent IP traffic. Last column presents num-
ber of transport protocol ports as a sum for inbound and outbound traffic.

ends a connection from a close() call that only dissolves an association between
a file descriptor and the socket. The latter may happen in case of multi-threaded
applications, which may—or may not—share the file descriptor table amongst
its threads. This depends on the detailed configuration of a particular thread,
which is difficult to discover on a Linux machine. Thus, tracedump utilizes
the conventional procfs network diagnosis interface, i.e. the /proc/net/tcp

and /proc/net/udp special files. This interface is quite slow, hence a separate
garbage collector thread is required in order to continuously re-read these files
in an asynchronous manner.

4.2.4 Practical application

Tracedump has a simple command-line interface. Either a process ID or a
command line is accepted as the program argument. Provided that the user
has root privileges, it is possible to attach to any process in the system. Hence,
tracedump can be used by system administrators for inspection of any user
activity on a Linux server. The output of tracedump is in PCAP format, which
may be further processed with traffic analysis tools like Wireshark or flowcalc.
It is also possible to visually examine IP packets in real-time, by adopting the
UNIX pipe mechanism and e.g. the tcpdump program.

Listing 4.1 presents an illustrative application of tracedump. In this example,
an installation CD ISO disk image of a popular Linux distribution is downloaded
using the BitTorrent [36] protocol. Our aim here is to roughly estimate the
overhead of the BitTorrent protocol, in order to demonstrate tracedump.

In line 1, tracedump is started so it monitors a BitTorrent client applica-
tion downloading a file. In line 2, the resultant PCAP file name is reported:
dump.pcap. The download process completes in 6 minutes, attaining an average
throughput of about 2 MB/s.

32

Tab. 4.2 presents brief characteristics of the generated IP traffic, obtained
using utility programs of the libtrace library [5]. The resultant ISO file is
705, 998, 848 bytes long, hence the overhead of the BitTorrent protocol—including
the network and transport protocols—is roughly 4.2% of the downloaded file
size. This also includes all of the DNS query-reply traffic induced during the
download process. Note that the output file is already an elementary dataset
for developing a traffic classifier for the BitTorrent protocol.

4.2.5 Summary

Tracedump is a packet sniffer that lets for capturing traces of IP packets gen-
erated by a single application. This eliminates the problem of ground-truth,
as the name of the application is known by design. However, in order to cap-
ture larger datasets of IP traffic, automation tools should be used in concert
with tracedump. The obtained traces can be applied to develop specialized TC
algorithms designed for the Waterfall architecture.

4.3 Flowcalc: flow analysis toolkit

4.3.1 Introduction

Flowcalc [58] is a software toolkit for converting raw IP traffic traces into more
abstract data format, Attribute-Relation File Format (ARFF), which is more
suitable for flow-based traffic analysis. In essence, Flowcalc calculates IP flow
statistics from traffic datasets, e.g. PCAP files. From the perspective of ML,
as described in Chapter 3, Flowcalc is responsible for segmentation, grouping,
and feature extraction in a classification system: its ultimate result is a set of
feature vectors.

ARFF FILE FORMAT

#1 #2 #3
Flow
states

Stream of
packets

Time

PLUG-IN MODULES

Timeout New packet

Traffic
features

Closed

Feature
vectors

libflowcalc

flowcalc

Figure 4.3: Architecture of Flowcalc.

The general architecture of Flowcalc is shown in Fig. 4.3. Internally, it
consists of two software modules: libflowcalc, which is the engine of the whole
system, and flowcalc, which integrates various traffic analysis plug-in modules
and provides a command-line user interface.

33

In more detail, libflowcalc reads traffic data in various formats—e.g. PCAP,
ERF and DAG—using the libtrace [5] library. Next, each IP packet is parsed,
de-duplicated, and matched with its IP flow. After this step, several packet
metadata is extracted, like network and transport protocol details, packet di-
rection, timestamp, size, payload, and parts of the TCP session state. Next, the
packet is passed to several plug-in modules, all of which maintain own state in-
formation and compute various features of the traffic, e.g. average packet sizes.
Finally, when the last packet of a given flow is observed, libflowcalc will query
each plug-in for a flow summary, which is provided as a partial feature vector.
The results collected from all plug-ins are concatenated and a full feature vector
that represents the flow is printed to the standard output.

The user-facing part of the system, flowcalc, is responsible for loading the
plug-ins and generating the first features of each flow, e.g. flow id, source and
destination IP addresses, and transport protocol port numbers. Also, users may
modify run-time options through command-line arguments, e.g. desired list of
plug-in modules, TCP session tracking options, and IP flow limits.

4.3.2 IP flow tracking

One of the crucial operations of Flowcalc is tracking IP flows, i.e. grouping
IP packets into time-ordered sequences of all messages exchanged between two
Internet peers in a single connection, e.g. a TCP stream. In order to accomplish
this task, Flowcalc employs the libflowmanager software library [4] with a few
customizations to the original flow tracking algorithm.

First, when a packet arrives, it is inspected for the information needed to
re-construct the flow 5-tuple, i.e. a sequence of the following information:
• Tp, transport protocol: TCP or UDP;
• IPmin, smaller IP address: the address that evaluates as a smaller

decimal number compared with the other peer, e.g. 173.194.223.101;
• Pmin, port number of IPmin: the transport protocol port number on

the side of IPmin, e.g. 443;
• IPmax, larger IP address: the larger of the two IP addresses, e.g.
212.106.181.99;

• Pmax, port number of IPmax: the port on the IPmax side, e.g. 53152.
Next, the 5-tuple is used as a key that uniquely identifies the IP flow that

matches the IP packet. The key is used to search through a hashing table that
keeps track of all flows. If the lookup succeeds, the flow state is updated and
the packet is passed onwards. If the lookup fails, it means that the packet is the
first observation of a new IP flow. In such a situation, a new entry is created
in the hashing table, with some additional information: flow identifier, packet
timestamp, source and destination IP addresses, and the port numbers.

Then, we infer the packet direction: if the packet source IP address and
port match the values of the first packet observed in given flow, we define the
direction as upload ; otherwise, we define it as download. This information is
important, as traffic characteristics usually differ for the client (upload) and
server (download) messages of the same protocol.

Next, we remove immediate duplicates of the same packet for given direction
of the flow. This feature is realized by keeping track of the last values seen in
specific packet headers, e.g. IPv4 Identification, UDP Checksum, etc. Also, if

34

the flow is TCP, we detect permanent packet loss in order to skip the flows with
incomplete stream data.

Finally, we decide if the flow should be closed and the state information
should be discarded. For UDP flows, we expire the flows after 2 minutes of
inactivity [12]. For TCP, we expire the flows after 2 hours and 4 minutes [74],
unless the connection is actively closed by both peers—in such a case, we expire
the flow immediately. For half-closed and unestablished TCP connections, we
expire the IP flows in 4 minutes [19]. As already discussed, when the last packet
of a given flow is observed, i.e. when the flow is expired, Flowcalc will call all
plug-in modules and collect their traffic features.

Apart from the expiration algorithm described above, Flowcalc can option-
ally expire flows based on an unconditional, constant timeout (e.g. after 10
seconds since the flow has started), or based on a packet counter (e.g. after 5th
packet is observed for the given flow). This functionality resembles real-time
traffic analysis, when certain requirements on the classification timeliness have
to be met.

4.3.3 Available modules

Flowcalc is an extensible software toolkit, which allows for writing custom plug-
ins that support any IP traffic classification algorithm. However, Flowcalc comes
with several modules already available for computing popular traffic features:
• stats: computes the minimum, maximum, average, and standard devia-

tion for the packet payload sizes and their inter-arrival times, separately
for both flow directions;

• counters: counts number of packets and the total bytes of payload, for
both directions;

• pktsize: records the payload size of the first 5 packets, for both directions;
• payload2: records up to 32 bytes of packet payloads, for both directions;
• dns: listens to DNS transactions and labels IP flows with their corre-

sponding domain names;
• coral: classifies flows using CAIDA CoralReef port number classifier [84];
• lpi: classifies flows using libprotoident [6], a lightweight variant of DPI;
• ndpi: classifies flows using nDPI [108], a DPI software library;
• web: computes histograms of web request sizes and timing;
• websize: records payload sizes of the first 5 packets of web requests and

responses, skipping handshake negotiations;
An illustrative example of Flowcalc output is presented in the Listing 4.2.
Flowcalc was already used by other researchers, e.g. [57].

35

1 %% f l owca l c run at Wed Dec 5 13 : 34 : 56 2016
2 % modules : ndpi
3 @re la t ion ’/ t r a c e / trace −2012.05.26−17:40 :39 . pcap . gz ’
4 %% f l owca l c 0 .1
5 % f c i d : f low id
6 % fc ts tamp : timestamp o f f i r s t packet in the f low
7 % f c du r a t i on : f low durat ion
8 % f c p r o t o : t r anspor t p ro to co l
9 % f c s r c a dd r : IP address o f connect ion i n i t i a t o r

10 % f c s r c p o r t : TP port number o f connect ion i n i t i a t o r
11 % f c d s t add r : IP address o f remote peer
12 % f c d s t p o r t : TP port number o f remote peer
13 @attr ibute f c i d numeric
14 @attr ibute fc t s tamp numeric
15 @attr ibute f c du r a t i on numeric
16 @attr ibute f c p r o t o {TCP,UDP}
17 @attr ibute f c s r c a dd r s t r i n g
18 @attr ibute f c s r c p o r t numeric
19 @attr ibute f c d s t add r s t r i n g
20 @attr ibute f c d s t p o r t numeric
21 %% ndpi 0 .1 − nDPI
22 @attr ibute ndpi proto s t r i n g
23 @data
24 1 , 0 . 011 , 0 . 0653 ,UDP,212 . 1 4 . 1 74 . 1 02 , 2 102 , 1 99 . 1 65 . 7 6 . 1 1 , 1 23 , ntp
25 2 , 0 . 439 , 0 . 0081 ,UDP,212 . 14 . 1 74 . 2 34 , 9173 , 209 . 5 1 . 1 61 . 2 38 , 123 , ntp
26 3 , 0 . 675 , 0 . 1146 ,UDP,89 . 2 24 . 252 . 57 , 5 3334 , 212 . 1 4 . 1 74 . 9 , 1 0115 , ukn
27 4 , 0 . 999 , 0 . 1158 ,UDP, 2 1 2 . 1 4 . 1 7 4 . 2 0 2 , 5 5 7 3 5 , 8 . 8 . 8 . 8 , 5 3 , Se rv i c e s ,DNS, dns
28 5 , 1 . 438 , 0 . 0091 ,UDP,212 . 14 . 1 74 . 234 , 9173 , 216 . 218 . 254 . 202 , 123 , ntp
29 6 , 1 . 653 , 0 . 0093 ,UDP, 2 1 2 . 1 4 . 1 7 4 . 1 0 5 , 6 5 4 7 6 , 8 . 8 . 8 . 8 , 5 3 , Se rv i c e s ,DNS, dns
30 7 , 2 . 439 , 0 . 0077 ,UDP,212 . 1 4 . 1 7 4 . 2 3 4 , 9 1 73 , 2 09 . 8 1 . 9 . 7 , 1 2 3 , ntp
31 8 , 2 . 913 , 0 . 0211 ,UDP,154 . 20 . 231 . 103 , 12420 , 212 . 14 . 174 . 96 , 19170 , b i t t o r r e n t
32 9 , 3 . 393 , 0 . 0090 ,UDP,61 . 57 . 112 . 2 10 , 20392 , 212 . 14 . 1 74 . 75 , 12618 , b i t t o r r e n t
33 . . .

Listing 4.2: Illustrative Flowcalc output, with the ndpi module enabled.

36

Chapter 5

Literature Survey

We conclude Part I of the thesis with a literature survey of traffic classification
and related methods. We reinforce the ideas presented in the previous chap-
ters with real-world examples of classifiers, application detectors, ground-truth
techniques, and other interesting works. The survey motivates the thesis by
showing the need for integrating many independent methods into one system.

The aim of the survey—published in 2013 in [62]—is to discuss diversity
in classification methods. We selected publications that present differentiated
methods, were published in 2009-2012, and are relevant to the thesis topic.
Comparing with other similar works—namely [105], [28], and [159]—our work
focuses on different time span. We review newer works that were not mentioned
in these studies, e.g. [14, 15, 41, 56]. Moreover, the chapter gives the reader a
quick insight into various methods for extracting traffic features (summarized
in Table 5.3), which can be combined together in a Waterfall TC system.

5.1 Related works

In an widely cited and comprehensive survey of traffic classification using ML
[105], Nguyen et al. review works published during 2004-2007. The authors
claim that ML was used for the first time for classifying traffic in 1994 [67],
and that it was the starting point for much of the further work. However,
many works fundamental to the state of the art appeared about a decade later,
e.g. [16, 82,101,123,154,158].

A survey by Callado et al. [28] divides traffic analysis into packet- and flow-
based, and references several traffic classification papers published during 2004-
2007. Four algorithms are compared in terms of completeness and accuracy:
BLINC [82], Bayesian [101], ”On The Fly” [16], and Payload Analysis [135].
The authors conclude with recommendations for traffic classification and pose
eight research questions.

A paper by M. Zhang et al. [159] and its accompanying website [25] present
a list of 68 traffic classification papers published during 1994-2009 together with
a catalog of 86 datasets used in these works. The authors propose a structured
taxonomy of traffic classification and use it to answer the question on the global
share of P2P traffic—basing on the results found in the reviewed papers.

Kim et al. in [86] give an insightful comparison of three general approaches

37

to traffic classification: ports-based, host-behavior-based, and flow-features-based.
The authors evaluate these methods on a strong, few-terabyte dataset collected
at diverse geographical locations. Their five key findings were: 1) port num-
ber can still constitute a relevant feature; 2) behavior-based classification can
be ineffective on backbone links and 3) it may exhibit low byte accuracy; 4)
backbone traffic classification needs unidirectional TCP flow features; 5) their
classifier based on SVM outperformed other ML algorithms and produced robust
results once it was trained with a representative, unbiased training set.

In a recent study, Dainotti et al. [40] anticipate future directions in traffic
classification. The authors show the evolution and current state of the field, and
draw attention to the taxonomy of flow objects and traffic classes. Four chal-
lenges are discussed: 1) lack of common, representative traffic datasets labelled
with ground-truth; 2) inadequacy of current methods to the three trends in net-
work protocols: encapsulation, encryption, and multi-channel communication;
3) poor scalability of algorithms to high-bandwidth links; 4) lack of standard
procedures and benchmarks for method evaluation. The authors argue for fur-
ther research on multi-classifier systems and for development of open-source
traffic classification tools.

5.2 Traffic classification

In this category, we collect papers that describe algorithms for identifying any
network protocol, or at least a few protocols (e.g. group of P2P-TV protocols).
For instance, such algorithms can be deployed on a router to provide statistics
on the traffic passing through it.

1) KISS: Stochastic Packet Inspection Classifier for UDP Traffic: The work
by A. Finamore et al. [56] published in 2010 (extends the original 2009 pa-
per [55]) presents a payload inspection classifier for UDP traffic. The authors ex-
ploit the fact that protocols running over UDP must implement an application-
specific header at the beginning of the packet payload, due to stateless nature
of UDP communication.

For each 80-packet window in a given flow, the KISS algorithm counts oc-
currences of distinct 4-bit groups in the first 12 bytes of the packet payload;
see Fig. 5.1 for an illustration. For each of 24 groups, a χ2-like test is used in
order to measure the distance between distribution of observed values and the
uniform distribution, according to Equation 5.1:

Xi =

11112∑
v=00002

(Oiv − E)2

E
, (5.1)

where: Xi is the distance for group offset i, v is the value, Oiv is the number
of observed occurrences for value v on offset i, and E is the expected value
(E = 80

24 = 5). The symbols 00002 and 11112 represent binary numbers: 0 and
15 in decimal system, respectively.

Thus, a characterization of randomness in the application header is obtained,
in form of a 24-element feature vector. This vector is used in an SVM decision
process, i.e. it is used for training and classification in a typical manner.

The authors evaluated the algorithm on a ca. 100GB dataset of real and
testbed network traffic, obtaining respectively 99.6% and <1% of True Positives

38

Figure 5.1: Feature extraction in the KISS algorithm: for each packet in an
80-packet window (a), the first 12 bytes of UDP payload are divided into 24
groups of 4 bits each (b). Number of occurrences of distinct values in given
group is counted for the whole packet window (c).

and False Positives, on average.
2) K-Dimensional Trees for Continuous Traffic Classification: In an inter-

esting work published in 2010 by V. Carela-Español et al. [30], the authors revisit
the idea by L. Bernaille et al. [16] of early traffic classification by analyzing the
size and direction of the first few packets of a TCP connection.

However, in this new work the authors apply the K-dimensional trees al-
gorithm [68] instead, which resulted in relatively small times for training and
classification. The proposed system operates in real-time and can be contin-
uously retrained. A preliminary evaluation was performed, using a ca. 1TB
dataset of 12 types of real network traffic.

3) Abacus: Accurate behavioral classification of P2P-TV traffic: In 2011,
P. Bermolen et al. [14] published an exhaustive work on a classifying P2P-TV
traffic, preliminarily introduced in [146].

The authors present a method that counts the number of packets received
by a given host from each of its peers. Histogram of packet counts received in a
5-second window is used as a feature vector for an SVM classification algorithm.

Bermolen et al. present an excellent experimental analysis of performance,
portability, and parameter sensitivity. The authors evaluated the system on a
ca. 26GB dataset of testbed P2P-TV traffic (SopCast, TVAnts, PPLive, and
Joost) and on a ca. 4GB of real “background” traffic: they report 95% of True
Positives and less than 0.1% of False Positives in the worst case—for packets,
bytes, and peers.

4) TCP Traffic Classification Using Markov Models: In a work published in
2010 by G. Münz et al. [103], a lightweight method for classification of TCP
flows using observable Markov chains [120] is presented. The discretized packet
length, direction, and position within the flow are mapped to a state. For

39

Label Classifier (see [9, 150]) Overall performance Selected?
J48 J48 Decision Tree 97.2% X
K-NN K-Nearest Neighbor 95.9% X
R-TR Random Tree 96.3% X
RIP Ripper 97.0% X
MLP Multi Layer Perceptron 82.3% X
NBAY Naive Bayes 43.7% -
PL PortLoad [2] 83.7% X
PORT Port number 15.6% -

Table 5.1: Stand-alone classifiers used in [41]. The “Overall performance” col-
umn presents the overall classification accuracy, as reported by the authors; the
“Selected?” column indicates which classifiers were used in the final system.

Label Combiner Reference in
[87]

Best perfor-
mance

NB Naive Bayes [44] pp. 126 93.5%
MV Majority Voting [13] pp. 112 90.8%
WMV Weighted Majority Voting [129] pp. 123 91.0%
D-S Dempster-Shafer [121] pp. 175 97.0%
BKS Behavior Knowledge Space [75] pp. 128 97.9%
WER Wernecke [149] pp. 129 97.9%

Table 5.2: Algorithms for combining pattern classifiers, as applied in [41]. The
“Best performance” column gives classification accuracy for the best selection
of stand-alone classifiers working in an ensemble, as reported by the authors
(see Table 5.1).

each application of interest, a Markovian model is generated in the training
stage. During classification, the a-posteriori probability of observed packets is
calculated for each model, and the maximum value is chosen.

The authors performed experimental validation on a small dataset and com-
pared the results to the well-established work by L. Bernaille et al. [16]; however,
these two methods are inherently different. The Markov chain method yielded
better stability of the results, with similar average precision and recall values.
The authors extended their method in [104] by introducing a special “end of
connection” Markov state, which improved the accuracy (validated on a larger
dataset).

5) Early Classification of Network Traffic through Multi-classification: The
work by A. Dainotti et al. [41] published in 2011 presents an innovative approach
of multi-classification: the traffic is simultaneously processed by an ensemble of
several stand-alone classifiers, and the final result is obtained using a decision
combiner algorithm [87].

The authors connect eight stand-alone classifiers (see Table 5.1) using six
state-of-the-art combiners (see Table 5.2). Experimental validation on a 59GB
dataset of real traffic yielded the best accuracy for the BKS combiner and an
ensemble of 6 classifiers: J48, K-NN, R-TR, RIP, MLP, and PL.

The authors highlight that in case we limit feature extraction to just the
first few packets in a flow, their method brings significant performance improve-

40

ments, comparing to the best results of stand-alone classifiers working alone: for
example, in case of just the first packet being used, a 20.8% improvement. The
authors chose to use the first 4 packets, obtaining the final accuracy of 98.4%;
supplementary metrics were not reported.

6) CUTE: Traffic Classification Using TErms: In 2012, S.H. Yeganeh et al.
published a paper [155] in which they propose a payload inspection classifier
that automatically finds protocol signatures.

For the training, the algorithm extracts common terms shared by flows of a
given protocol: it aligns the flows and finds all common substrings of at least b
bytes. Next, for each protocol, it assigns weights to terms, according to Eq. 5.2:

W p
t =

{
(

ft
p∑

p∈P f
t
p
)ρ fpt ≥ T

0 fpt < T
, (5.2)

where fpt is the frequency of term t in protocol p, P is the set of all protocols,
and W p

t is the term weight; ρ and T are the algorithm parameters. Terms that
are unique to protocol have weights close to 1, whereas common terms have
weights close to 0.

During classification, for each protocol, the algorithm searches the packet
payload for the learned terms, and computes the average weight. The protocol
with the maximum value is chosen as the target class.

Yeganeh et al. show by means of theoretical analysis and experimental
validation, that in case of pattern matching for traffic classification, occurrences
of terms in network flows are more important than their relative order. In
practice, this means that it is enough to use term sets instead of lists: one can
identify a certain protocol by checking for occurrence of terms in any order.
This makes CUTE inherently simpler and faster than similar algorithms that
employ term lists, e.g. LASER [112].

The authors used two traffic traces from Tier-1 ISPs for experimental analy-
sis, i.e. tuning the classification system and validating its accuracy. They report
precision and recall metrics above 90% for almost all protocols considered.

5.3 Single application detection

In this section, we describe algorithms that aim at single application or certain
traffic kind. For instance, such algorithms can be deployed on a network firewall
in order to block access to given service. We maintain the numbering of papers
for easy referring in Table 5.3.

7) Tunnel Hunter: Detecting application-layer tunnels with statistical finger-
printing: In a paper published in 2009 [46], M. Dusi et al. present a reliable
method for detecting HTTP and SSH tunnels.

The algorithm is trained with legitimate (non-tunneled) HTTP and SSH
traffic. Each flow is characterized by a signature consisting of packet size, inter-
arrival time, and arrival order. During classification, a flow “anomaly score” is
computed by comparing the flow signature to fingerprints of legitimate traffic.
If the value is above a certain level, the flow is considered as carrying tunneled
traffic. The authors claim nearly 100% completeness and accuracy (verified
experimentally).

41

8) Skype-Hunter: A real-time system for the detection and classification of
Skype traffic: The paper by D. Adami et al. published in 2012 [3] introduces a
novel method for identification of the Skype protocol.

The authors present a detailed, packet-level analysis of the Skype traffic and
propose a relevant detection algorithm that combines signature-based and sta-
tistical procedures. The method is experimentally validated on several datasets.
Compared with standard statistical classifiers and to a state-of-the-art Skype
classifier [18], it yielded better performance results.

5.4 Obtaining ground-truth

In this section, we describe papers on obtaining datasets for verifying the per-
formance of classification methods. In a typical scenario, the author of a new
method will work on a trace of network traffic while developing the algorithm.
The traffic composing the trace needs to be representative for the scope of in-
terest of a particular research effort. The dataset should also indicate the real
application that generated each flow in the dataset, so the researcher is able to
compare the results of the algorithm with the right answer: this information is
called ground-truth. We refer to Chapter 4 for more details.

9) GT: picking up the truth from the ground for Internet traffic: In a 2009
paper published by F. Gringoli et al. [73], the authors present a distributed
system for capturing Internet traffic in a computer network. The system keeps
the names of applications that generated the traffic.

A special software agent “gt” is installed on each machine taking part in
the experiment. The agent periodically queries the operating system for a list
of opened network sockets and the names of applications that own them. For
each socket, it stores a piece of information with current time-stamp, local and
remote IP address and port number, transport protocol, and application name.
At the same time, a standard packet sniffer is run on the gateway router, so
that all the traffic coming from and into the local network is captured.

Finally, a post-processing tool “ipclass” is run. The tool connects the socket
information collected by gt with the traffic captured on the router. As the
result, a traffic trace file annotated with ground-truth is produced. The authors
validated the method on a 218GB dataset. For the completeness metric, they
report more than 99% of bytes and 95% of flows.

10) Quantifying the accuracy of the ground-truth associated with Internet
traffic traces: In 2011 M. Dusi et al. [48] published a paper that compares
their gt tool [73] to traditional port- and DPI-based methods for establishing
ground-truth.

Basing on evaluation on a ca. 200GB dataset, the authors claim that—
depending on the protocols composing a trace—ground-truth information can
be incorrect for up to 91% bytes for port-based and 26% for DPI-based methods.
The authors speculate that the error one might commit while applying these
well-established methods to publicly available anonymized traces is significant,
especially for modern traffic like Streaming, Skype, or P2P.

11) Tracedump: A Novel Single Application IP Packet Sniffer: The paper
published in 2012 [61] (see Chapter 4) introduces a packet sniffer that captures
traffic of a single Linux process only. This solves the problem of ground-truth,
as the application name is immediately known.

42

The papers explains implementation of a single-process packet sniffer and
provides an architectural view on the proposed solution. The “tracedump”
utility captures all application traffic in real-time, including DNS traffic. A
short evaluation on BitTorrent traffic is presented. The “tracedump” tool can
run a computer program in a fully controlled manner—for instance, GUI testing
tools can be applied to create a kind of specialized traffic generator (preliminary
results available at [60]).

5.5 Traffic analysis

12) Taking a Peek at Bandwidth Usage on Encrypted Links: In a 2011 paper [47],
M. Dusi et al. present a simple regression-tree-based algorithm that monitors
the amount of data that protocols transmit over encrypted tunnels, e.g. IPSec.

During the training phase, both the cipher- and plain-text transmissions are
visible to the algorithm; the plain-text is used for ground-truth information. As
traffic features, the authors employed probability mass function of packet sizes,
and statistics related to changes in packet direction. During the operation phase,
the algorithm extracts flow features each few seconds, and applies a regression
tree algorithm in order to give estimates on the traffic carried within the tunnel.

The authors evaluated their method on a ca. 50GB dataset and reported an
acceptable accuracy: the performance depends on the differences in the networks
used for training and testing.

13) DNS to the Rescue: Discerning Content and Services in a Tangled Web:
In 2012, I. Bermudez et al. published a paper on inferring Internet traffic by
analyzing its DNS context [15]. The work introduces “DN-Hunter”, a system
that tags traffic flows with their associated domain name, based on the fact that
each new flow is anticipated by a DNS query.

The system consists of two modules: a flow sniffer, which reconstructs traffic
flows, and a DNS resolver, which maintains mapping between clients, domains,
and servers. The authors verified that flow tagging can be accomplished in most
cases and could not be replaced by making a reverse DNS lookup or inspecting
TLS certificates—this would fail in 94% or 86%, respectively. The key property
of this novel method is that it can identify traffic before the actual flow starts.

Using capabilities of DN-Hunter, the authors provide a detailed analysis
of Content Delivery Networks (CDNs) in 5 datasets of total 64 million flows,
covering thousands of ISP customers in US and Europe. Analysis of real traffic
revealed domains handled by hundreds of servers that change with time. The
authors discovered a diurnal pattern of more machines during late evenings; a
similar phenomenon was noticed for CDNs and their domains. For an 18-day
observation period, about 100,000 new domains emerged each day.

DN-Hunter can map distribution of particular content across CDNs—the
authors found that LinkedIn was hosted by Edgecast (59% of flows), Akamai
(17%), CDNetworks (3%), and on own servers (22%). The system can also reveal
the domains of a specific CDN: top three domains provided by Amazon EC2 in
Europe were cloudfront.net (20%), playfish.com (16%), and sharethis.com (5%).
Finally, DN-Hunter can tell the most popular services delivered on a given IP
port number—for port 25 the authors observed service tags of “smtp”, “mail”,
“mxN”, and several others. Interestingly, they also identified several BitTorrent
trackers running on the Google Appspot service.

43

5.6 Discussion

1. There are many ways to classify the traffic. Each work reviewed in
Sections 5.2 and 5.3 presents a different approach to classification: analysis
of packet count, length, payload, etc.—see Table 5.3 for a summary. We
speculate that each modern Internet protocol exhibits so many phenomena
that it has plenty of observable traffic characteristics that can reveal its
generating application. Moreover, A. Dainotti et al. in [41] proved that
it is possible to combine multiple different classifiers into one system that
unveils high performance. Thus, we argue that:
(a) there are many traffic features yet to be found (anticipated e.g. by

[14,15,56]);
(b) traffic classification algorithms can be combined so they complement

each other (e.g. [56] for UDP and [104] for TCP traffic);
(c) there is much room for improvement in the design of traffic classifiers

that analyze several kinds of traffic features at the same time, i.e.
multi-level traffic classifiers (e.g. [41, 82]).

2. Classification methods need thorough validation. New services
appear rapidly on the Internet, and the application protocols get more
sophisticated [40], hence modeling new kinds of traffic gets harder. Con-
sequently, robust traffic classification methods need thorough experimental
validation, as purely theoretical approach is insufficient. A certain sign
of a high-quality paper is a detailed section on validation, employing an
up-to-date traffic trace. We give our recommendations for validating TC:
(a) usage of large, representative, and geographically diverse datasets

with relevant amounts of background traffic (e.g. [56, 86]);
(b) presentation of the results in terms of well-established and comple-

mentary performance metrics—e.g. recall with precision, or True
Positives with False Positives (e.g. [56, 104]);

(c) analysis of parameter sensitivity of the algorithm (e.g. [14, 155]).
3. The problem of common traffic datasets is still unsolved. Several

respected scientists demanded publication of common, packet-level traf-
fic datasets labeled with ground-truth: e.g. [124] in 2007 and [40] more
recently. This would enable systematic and fair comparison of classifi-
cation methods, but the problem still remains largely unsolved. Some
authors published their datasets, but none of them satisfies all of the pos-
tulated requirements (see Chapter 4). However, authors of the studies
referenced in section 5.4 made ground-truth data collection simpler and
more comprehensible. Particularly, the “gt” [73] software agent seems to
be a candidate for the standard ground-truth tool for current and future
research on Internet traffic.

5.7 Conclusions

In this Chapter, we reviewed 13 significant papers on traffic classification and
related matters, published during 2009-2012. We presented the review in 4 cat-
egories: general traffic classification in Section 5.2), single protocol detection
in Section 5.3, the ground-truth problem in Section 5.4, and related works in
Section 5.5. We showed diversity in methods for analyzing IP traffic and dis-

44

cussed a few important issues, giving our recommendations. We also presented
a succinct “review of reviews” in traffic classification in Section 5.1.

A decade passed since the first major publications on traffic classification
appeared [105], but the authors of the reviewed papers proved that it is still
possible to find new algorithms [15, 56], or significantly improve the existing
ones [30]. In order to classify an IP flow, one can choose to either focus on a
specific traffic feature (packet counts [14], lengths [30], payload characteristics
[56,155], etc.), use many features at once [3,104], or combine several approaches
in a multi-classifier system [41].

Classification methods need to be verified on real IP traffic. The problem
of obtaining adequate traces labeled with ground-truth is still largely unsolved.
This limits systematic and fair comparison of existing methods: there are no
“reference benchmarks” in traffic classification. Besides, the authors of [48]
suggest that there may be a significant error in self-made traffic traces anyway.
Two utilities—“gt” [73] and “tracedump” [61]—can be applied to assure the
accuracy of ground-truth data.

Let us conclude with an observation that we are able to tell things apart if we
can see the differences among them. Our paper showed diversity in methods for
classifying IP traffic—in our opinion, an interesting direction for TC research.

45

Paper Traffic features Experimental dataset
1) Finamore et al.
[56]

For 80-packet windows:
amount of randomness in
the first 12 bytes of pay-
load

100GB of real and testbed
traffic (P2P-TV, Skype)

2) Carela-Español
et al. [30]

Size of the first few pack-
ets; port numbers

<1TB of real traffic
from CoMo-UPC [144];
ground-truth set with
DPI

3) Bermolen et al.
[14]

Histogram of packet
counts received from each
peer, in a time window
(5s)

26GB of testbed traffic
from 30 peers; <4GB of
real traffic without P2P-
TV

4) Münz et al. [103] For the first few TCP
packets: payload size,
packet direction, position
in stream

Self-made traces: 300
connections for training,
500 for testing

5) Dainotti et al.
[41]

Various Self-made 59GB trace of
real traffic (Oct 2009);
ground-truth set with
DPI

6) Yeganeh et al.
[155]

Existence of precomputed
terms in packet payload

Two 30-minute traces
from tier-1 ISPs on
different continents; no
encrypted flows

7) Dusi et al. [46] Packet size and loga-
rithm of inter-arrival time
(quantized values)

Self-made HTTP and
SSH traffic (legitimate
and tunneled)

8) Adami et al. [3] Packet size, packet pay-
load (signatures), inter-
arrival times

Self-made dataset, Tstat
Skype traces [139], and
DARPA dataset

12) Dusi et al. [47] For time-windows: his-
togram of packet sizes;
vector of packet counts
and sizes until change in
transmission direction oc-
curs

Self-made, real traffic:
36GB captured with “gt”
[73] (Oct 2009), 10GB
with ground-truth set us-
ing DPI (Jul 2010)

13) Bermudez et al.
[15]

DNS response received
within a time-window
preceding the IP flow

5 diverse sets of real traf-
fic from EU and US; 64
million TCP flows, almost
2 days of traffic

Table 5.3: Summary of the reviewed papers: traffic features and datasets used
for experimental validation

46

Part II

Cascade Classifiers of
Internet Traffic

47

Chapter 6

The DNS-Class algorithm

In this chapter, we present a novel TC method, DNS-Class, which was originally
published in [63]. The method targets roughly 30% of evaluated real-world
Internet traffic, and is an illustrative example of a building block for a Waterfall
system. Thus, below we motivate the need for cascading traffic classifiers, as
otherwise using DNS-Class alone would be impractical.

6.1 Introduction

No previous work presented complete description and evaluation of a TC method
that uses Domain Name System (DNS). We believe that the information carried
in DNS packets can provide a basis for new traffic classifiers and contribute to
MCS. The authors of [117] and [15] already described some important ideas
on this topic, but we present the first work that follows the state of the art in
traffic classification. For instance, comparing with these works, we adopt the
traditional notion of traffic classes that correspond to network protocols, and
we evaluate the performance of our system using well-known metrics. Moreover,
we motivate traffic classification using DNS by showing its application to multi-
classifier systems—i.e. to modular, cascade classification systems.

In this Chapter, we present DNS-Class: a novel ML method for classifying IP
flows by inspecting DNS traffic transmitted in a computer network. First, our
algorithm passively collects the information in DNS packets to find the domain
names behind connection peers (e.g. www.facebook.com). Second, by running
text classification on these names, DNS-Class reveals the generating application
(e.g. HTTP). Combining this information with port numbers further improves
the classification performance, even though port numbers alone are unreliable.

The novelty of our method is explained in the fact we believe this is the
first traffic classifier employing DNS domain names as traffic features. One of
the main strengths of DNS-Class is its ability to correctly classify an IP flow
by only inspecting its first packet. We argue that this represents a significant
step ahead with respect to the state of the art methods, which require several
packets before being able to perform any classification.

The contributions of DNS-Class are the following:
1. We present the first complete description and evaluation of a TC algorithm

that employs DNS, while conforming to the state of the art (Section 6.6).

48

2. We use DNS traffic analysis and an ML technique to propose our novel
traffic classification method, DNS-Class (Sections 6.2.1 and 6.2.2).

3. We indicate the interesting characteristics and potential applications of
traffic classification using DNS, with an example of cascade classification
(Section 6.2.3).

4. We give a short analysis on how different network protocols depend on
DNS, in terms of flows, packets, and bytes (Section 6.3.2).

5. We evaluate DNS-Class on real traffic traces, using well-known perfor-
mance metrics and traffic classes that correspond to popular network pro-
tocols (Section 6.4).

6. We show that the domain name alone is not enough to reliably classify
IP flows, and needs augmentation with the port number and transport
protocol name (Section 6.5).

7. We release the complete source code implementing the presented system
as open source [59].

6.2 The DNS-Class algorithm

The DNS-Class algorithm operates on traffic flows and consists of two stages:
DNS Search and Flow Classification. In essence, the first stage assigns domain
names to flows, while the second runs text classification on domain names ex-
tended with port numbers and transport protocol names. Below we give the
taxonomy that will be used throughout this Chapter.

We define as flow the set of packets belonging to the same connection neglect-
ing their direction, i.e. packets having the same 5-tuple of 〈IPsrc, Portsrc, IPdst,
Portdst, Proto〉, with the source src and destination dst optionally swapped.
The IP , Port, and Proto terms stand for IPv4 address, transport protocol port
number, and transport protocol name, respectively.

We also introduce an important notion of named flows: the flows for which
the peer sending the first packet queried the DNS system. In such a case, the
queried domain name is the flow name. On the contrary, if querying was not
needed, the flow is an anonymous flow. Note that querying DNS does not
necessarily involve communication with a DNS server, due to local caching of
DNS information.

In the context of TC, we employ the term application (with synonyms of
protocol and class) for referring to computer programs that generate Internet
traffic, or network protocols that transport it. The information on the real
application that generated a particular flow is called the ground-truth.

6.2.1 DNS Search

The DNS Search stage employs the idea of assigning domain names to IP flows,
which was introduced in [117] and [15], as detailed in Section 6.6.

The architectural view of DNS Search is depicted in Figure 6.1. Its first
element, DNS packet inspector, examines packets in DNS flows and updates
the Resolver database with information on domain names for client-server
pairs. The Flow tagger queries this database each time a new flow starts
and assigns DNS names, if possible. As the result of DNS Search, a set of flows
is obtained, in which some elements have a domain name assigned.

49

Figure 6.1: The DNS Search algorithm. Incoming packets are inspected for
DNS information, grouped into flows, and flows are tagged with names. The al-
gorithm discovered that the client 10.3.1.2 received earlier a DNS reply for the
server 173.194.65.104 with the name of clients1.google.com, so it tagged
the matching TCP connection with this domain name. The Resolver database
holds names for client-server pairs; the same server address can appear under
different names, depending on the client.

The DNS Search algorithm exploits the fact that Internet connections are
often anticipated by DNS query and response packets (see Section 6.3). For
example, a web browser will resolve clients1.google.com to 173.194.65.104

before attempting a TCP connection to the corresponding web server. By in-
tercepting the DNS response packet, an intermediary router can uncover the
original domain name entered by the user into the web browser location bar.

In greater detail, DNS packet inspector dissects packets according to
RFC1035 [99]. At its input, it takes successful replies to queries of A and
MX types. The destination address in the IP header becomes client address
(Clientaddr: the host that asked for the domain name), and each address found
in the DNS Answer becomes server address (Serveraddr: the host that the
client can connect to). The first element transmitted in the DNS Questions list
is the domain name; it is stored in the Resolver database under an index of
〈Clientaddr, Serveraddr〉, for each Serveraddr. This information will be cached
for the next 10 hours of traffic—unless updated earlier by another DNS packet
with the same index—which roughly imitates the caching mechanism usually
found in the DNS resolvers running on the client machines. We chose the value
of 10 hours arbitrarily; smaller values should work as well (see Section 6 in [15]).

The Flow tagger is run for every flow on the arrival of the first packet.
It queries the Resolver database for the domain name under 〈IPsrc, IPdst〉
index and assigns it to the flow (for the entire flow lifetime). If this fails, it tries
the opposite direction, i.e. 〈IPdst, IPsrc〉. If this fails too, no name is attached
to the flow and it is left anonymous, depicted as NO DNS in Figure 6.1. Note
that implementing a similar mechanism using reverse DNS lookup would fail:
in [15], the authors proved experimentally that issuing a reverse lookup on the
server IP of a randomly chosen named flow either returns a different domain
name (62% of flows), or yields no answer at all (29% of flows).

The DNS Search algorithm is designed to be implemented on a single ma-
chine, e.g. on a gateway router. However, the DNS packet inspector and

50

HTTP NTP Jabber BitTorrent
nk.pl:80/TCP pool.ntp.org:123/UDP talk.google.com:5222/TCP exodus.desync.com:6969/TCP
photos.nasza-klasa.pl:80/TCP clock.fmt.he.net:123/UDP talkx.l.google.com:5222/TCP tracker.openbittorrent.com:80/UDP
www.playmobile.pl:80/TCP ntp1.dlink.com:123/UDP chat.facebook.com:5222/TCP router.utorrent.com:6881/UDP
gg.hit.gemius.pl:80/TCP time.nist.gov:123/UDP xmpp.nktalk.pl:5222/TCP tracker.publicbt.com:80/UDP
www.facebook.com:80/TCP time-a.netgear.com:123/UDP talk.l.google.com:5222/TCP fr33dom.h33t.com:3310/TCP

Table 6.1: Examples of input to Flow Classification stage: the top-5 flow names,
with port numbers and transport protocol names. The BitTorrent protocol
uses dynamic port numbers, but its domain names can reveal the generating
application. Polish domains are specific to the dataset.

Flow tagger can be decoupled and implemented on two separate machines—
e.g. intercepting DNS information on a local recursive DNS server, and tagging
flows on a router—with small modifications to the algorithm.

6.2.2 Flow Classification

As the input to the classification stage of DNS-Class, we take the set of named
flows. Table 6.1 presents examples of input data, whereas Figure 6.2 shows clas-
sification of a particular TCP connection between 10.3.1.2 and 173.194.65.104

on port 443, having a domain name of clients1.google.com assigned.
First, flow information is transformed into a textual form by concatenating

the flow name, port number, and transport protocol name (using separating
characters). DNS-Class can also operate without flow features—i.e. can classify
solely by the domain name—which is demonstrated in Section 6.4.2 pt 2. For
the port number, we use the destination port of the first packet in a flow.

The text form is split by dots and dashes into a tuple of tokens T (T is
limited to the last 6 tokens by default). Digits are replaced with the capital
“N” character, except for the port number. The goal of this step is extracting
keywords from domain names. We also tried word segmentation in long domain
names as described in [106], but without a meaningful effect on the overall
classification performance.

The tuple of tokens T is converted into a set of text features F , by extracting
all word unigrams and bigrams. The algorithm has a Converter database,
which is used as an invertible function C that maps these unigrams and bigrams
to integers, as shown in Equations 6.1 and 6.2:

C(vw) = vk, (6.1)

C−1(vk) = vw, (6.2)

where vw ∈ W , the set of all known unigrams and bigrams, and vk ∈ K,
K = {1, 2, . . . , n}. Note that |W | = |K| = n. The set W is constructed during
the training of DNS-Class and held constant during classification, and so is
K. In case a given unigram or bigram cannot be found in the database, its
corresponding integer value is 0, i.e.

C(vx) = 0 vx /∈W, (6.3)

which means that vx is dropped and not considered in next algorithm steps.

51

Figure 6.2: The DNS-Class algorithm. The input flow data is rewritten, con-
verted into Vector Space Model x, and classified using support vector classi-
fication. The Converter holds 1-1 associations between textual features vw
and their integer counterparts vk. The Model is constructed during system
training and keeps weight vectors for each protocol.

In the Vectorization step, the set of text features F is converted into a
sparse feature vector x of size n, in which each dimension corresponds to a text
feature. In other words, a Vector Space Model (VSM) representation of the text
input is constructed [125]: x = (x1, x2, . . . , xn), where

xj =

{
1 j ∈ F ′
0 j /∈ F ′ ∀j ∈ K, (6.4)

and F ′ is the set of text features F converted to integers using function C. We
also tried other functions for xj—including the popular tf-idf metric [125]—but
we experienced no major impact on the overall system performance.

For the Classification step, we employ direct multi-class support vector
classification by Crammer and Singer [38] with a linear kernel, as in Liblinear
[51,83] and LibShortText [157]. In this step, the Model database is queried
for weight vectors wp, for each target class p:

wp = (w(1)
p , w(2)

p , . . . , w(n)
p), (6.5)

where each w
(j)
p term corresponds to the weight of text feature j ∈ K, and

p ∈ P , P = {1, 2, . . . ,m}: the set of all network protocols to be recognized by
the classification system. Let

α(x, p) = wT
p x, (6.6)

52

be the decision value for protocol p given feature vector x, then the decision
function is

arg max
p

α(x, p), (6.7)

which predicts the protocol behind x. In other words, in the Classification
step, we search for the protocol p that maximizes Equation 6.6 for a given
feature vector x. Note that x is a sparse vector with few non-zero elements,
thus obtaining the product described by Equation 6.6 can be optimized for fast
computation.

During training of DNS-Class, weight vectors wp are initialized using train-
ing instances of text, according to Equations 6.8 and 6.9:

min
{wp},{ξi}

1
2

∑
p‖wp‖2 + C

∑
i ξi

s.t. α(xi, yi)− α(xi, p) ≥ γi(p)− ξi ∀p, i
(6.8)

γi(p) =

{
0 yi = p
1 yi 6= p

, (6.9)

where i is the number of text instance, C ∈ R>0 is the regularization parameter,
ξi ∈ R≥0 are slack variables, and yi ∈ P is the true protocol behind feature
vector xi—that is, the ground-truth label. Roughly speaking, the goal of the

optimization described by Equation 6.8 is to have high w
(j)
p values for features

that are specific to protocol p, and low values for features that are common for
all protocols. See [51] and [157] for a more detailed description.

In the last step (Decision), the protocol p selected according to Equation
6.7 is translated into corresponding textual representation. For example, in
Figure 6.2, p = 1 stands for HTTPS.

6.2.3 Rationale

DNS-Class is a specialized traffic classifier that targets named flows and DNS
traffic passing through Internet gateways. This usually corresponds to a sig-
nificant portion of the whole traffic, as specified in [15], where Bermudez et al.
claim that for HTTP and TLS flows the portion of named flows usually exceeds
90% in most of their highly representative datasets. Given that HTTP is nowa-
days considered to be the dominant protocol in residential customer traffic [93],
the actual portion of named flows transmitted through Internet gateways can
be much higher than what our study shows in Section 6.3.2 for a particular
Internet Service Provider (ISP) network.

In Figure 6.3, we present one of the possible scenarios for DNS-Class: cascade
classification, which is described in more detail in the next Chapters of this the-
sis. Traffic traveling through a gateway is classified in a modular system. Each
module is responsible for handling only one part of the traffic, according to sev-
eral selection criteria. If an input flow cannot be classified, it is handed over to
the next module in the “cascade” of classifiers. In such a scenario, the goal of
DNS-Class is classifying only the named flows and DNS flows, leaving the anony-
mous flows for other modules. For example, DNS-Class can be augmented with
statistical classifiers, fine-grained methods [111], or even with other specialized
classifiers like Skype-Hunter [3]. Note that a reliable selection criterion for our
algorithm is simply the presence of a domain name attached to the flow.

53

Figure 6.3: Modular traffic classifier. We propose an algorithm that targets one-
third of network traffic in the investigated ISP network. DNS-Class immediately
classifies named flows, leaving anonymous flows for other classifiers.

Comparing with existing traffic classification methods, DNS-Class has in-
teresting properties. First, it immediately classifies network flows, requiring
just the IP header of the first packet and the information extracted from DNS
query-response conversations. Second, DNS-Class does not inspect the payload
of the packets (except for DNS traffic), which makes it resistant to TLS encryp-
tion. We thus believe it represents an important development in TC, and can
be applied to improve the performance of existing systems.

6.3 Datasets and traffic analysis

In this section, we analyze the traffic datasets that we used for validating DNS-
Class, and which will be used in the next section for presenting the practice of
applying DNS-Class to real network traffic. We also share our findings on how
Internet protocols depend on DNS.

6.3.1 Traffic traces

We collected the traffic during May-June 2012 and January 2013 at a Polish ISP
company that serves residential customers. In both cases, packet capture was
run for around one week on the same Point-to-Point over Ethernet (PPPoE)
server that handled a few hundred users. The maximum amount of captured
packet data was limited due to storage constraints; the Ethernet and PPPoE
headers were removed too. Table 6.2 summarizes the datasets, and Figure 6.4
presents one illustrative day of traffic in the Asnet1 dataset.

We established the ground-truth using lightweight packet inspection, as
implemented in the libprotoident library1, published by the University of

1Subversion revision number 154

54

19:00
21:00

23:00
01:00

03:00
05:00

07:00
09:00

11:00
13:00

15:00
17:00

Local time (CET)

10

0

10

20

30

40

50

M
eg

ab
its

 p
er

 s
ec

on
d

Download, TCP
Download, UDP

Upload, TCP
Upload, UDP

Figure 6.4: One day of traffic in Asnet1. Total network bandwidth usage of
client downloads and uploads, for TCP and UDP. The data was collected June
1-2, 2012 and represents 4-minute averages.

Dataset Start Duration Src. IP Dst. IP Packets Bytes Avg. Util Avg. Flows
(/5 min.) Payload

Asnet1 2012-05-26 17:40 216h 1,828 K 1,530 K 2,525 M 1,633 G 18.0 Mbps 7.7 K 92 B

Asnet2 2013-01-24 16:26 168h 2,503 K 2,846 K 2,766 M 1,812 G 25.7 Mbps 12.0 K 84 B

Table 6.2: Datasets used for experimental validation. The “Payload” column
gives the amount of data past the IP header. Both datasets contain real traffic
of the same population of domestic users.

Waikato [6]. We embedded this library in flowcalc (see Chapter 4) that con-
verts PCAP files into flow-level summaries in the ARFF file format. We made a
few minor corrections to the results of libprotoident by analyzing the traffic
traces manually, according to our knowledge. We noticed several flows on ports
6969, 2710, and 3310 being erroneously classified as HTTP NonStandard
instead of BitTorrent; another problem was an over-matching rule for the
Teredo protocol.

We adopted definitions of traffic classes from libprotoident, ignoring the
transport protocol name, e.g. Kaspersky instead of Kaspersky TCP and
Kaspersky UDP. For brevity, we used the Mail class as an aggregate for
POP3, SMTP, and IMAP. For our experiments with the CAIDA port-based
classifier in Section 6.4.2 pt 1, we translated the names of traffic classes.

Note that our definitions of traffic classes correspond to network protocols—
which is motivated in Section 6.6—but domain names allow for a more de-
tailed visibility of e.g. web traffic. However, we leave this as out of scope of
this chapter, and refer the reader to [52] and [15] for works strictly devoted
to HTTP/HTTPS traffic. On the other hand, established traffic classification
methods already offer similar level of granularity in traffic classes as DNS-Class.

We sanitized the datasets by removing incomplete TCP sessions, and by
dropping the traffic that is specific for Local Area Network (LAN) environments—
e.g. DHCP, NetBIOS, and SSDP. As our last step, we ran our DNS Search
algorithm described in Section 6.2.1 to discover the domain names of the net-
work flows in our datasets, obtaining the results presented in Table 6.3.

55

6.3.2 Traffic characteristics

In order to show how different applications depend on DNS, we divide the set
of all network protocols into three groups: 1) traditional client-server protocols
(e.g. browsing, e-mail, streaming), 2) P2P and Gaming traffic, and 3) other.
The last group consists of DNS traffic and the flows for which our ground-truth
method failed. Table 6.3 (pp. 57) presents results of traffic analysis, and is the
basis for this section. For the sake of brevity, we report only on the Asnet1
dataset, leaving the Asnet2 dataset for temporal stability evaluation in Section
6.4.2 pt 5. For examples of flow names and port numbers, see Table 6.1.

For validating DNS-Class, we need flows with both the ground-truth label
and the domain name (i.e. 26% of flows in Asnet1). However, because DNS-
Class identifies DNS packets directly during DNS Search, in total our algorithm
targets 38.7% of all flows in Asnet1. As can be seen in Table 6.3a, network
protocols differ in how much they depend on DNS. In next sections we will
only consider the protocols for which at least 10% of flows have a domain name
(in order to have enough training data), except for BitTorrent and Skype,
which were included for their popularity in the traffic classification literature.

Below we present our findings for the Asnet1 dataset. Note that other
authors already reported similar results using different datasets, e.g. in Section
3.1.2 of [15] and Sections I and V-A of [117]. Comparing with our work, we
more deeply analyze the dependence on DNS for many network protocols, and
give the results in terms of flows, packets, and bytes. See Table 6.3 for details.

For the Asnet1 dataset, we found that:
1. 27% of flows have a domain name. We believe this is the lower bound,

as the Asnet1 dataset has a limited amount of the packet payload. Note
that for networks with higher impact of HTTP traffic than in Asnet1,
the portion of named flows would also be higher.
(a) Flows of traditional client-server protocols vary in their dependence

on DNS, but generally this class of flows often incurs DNS queries:
78% of traditional flows have a domain name.

(b) P2P applications and computer games almost never employ DNS for
communication: on average, only 0.2% of their flows have a domain
name. These protocols do not need DNS for communication between
peers. For example, BitTorrent trackers point to seeders and leechers
by their IP addresses; similarly, game servers also list the players by
IP addresses, and the exchange of game information occurs directly
between the peers.

2. 50% of bytes and 44% of packets travel in named flows. The average size
of named flows is two times higher than the size of anonymous flows (200
KB vs. 110 KB).
(a) For traditional protocols, 74% of bytes and 73% of packets are trans-

mitted in named flows.
(b) For P2P and Gaming traffic, this is 0.0018% and 0.02% for bytes and

packets, respectively.
3. If a flow has a domain name, it is almost certainly not P2P nor Gaming.

Only 0.4% of named flows are P2P or games.
(a) This phenomenon can be practically applied as a quick method for

ensuring that a flow does not belong to a P2P application or a com-
puter game.

56

a)

Protocol
All traffic Traffic with domain name

Named flows Selected?
Flows Packets (K) Bytes (M) Flows Packets (K) Bytes (M)

(1)

HTTP 4,415,380 1,325,934 1,078,082 3,603,032 985,796 800,752 81.60% yes
HTTPS 540,650 58,940 29,219 340,897 41,941 20,571 63.05% yes

Kaspersky 43,340 485 16 16,391 193 7.3 37.82% yes
NTP 34,160 102 4.7 10,241 47 2.1 29.98% yes

STUN 20,786 540 276 4,646 35 1.8 22.35% yes
Mail 20,293 8,590 5,558 14,391 7,950 5,455 70.92% yes
SIP 18,498 374 127 78 69 22 0.42% -

Teredo 12,504 923 59 0 0 0 0.00% -
SSH 9,424 1,348 837 973 1,017 799 10.32% yes

Jabber 4,752 558 62 4,530 539 61 95.33% yes
SQL 4,752 3,196 1,086 9 62 33 0.19% -

Teamviewer 1,185 1,683 231 72 13 4.3 6.08% -
FlashPlayer 1,039 142 48 329 10 2.0 31.67% yes

RTMP 821 18,073 13,330 373 3,283 2,193 45.43% yes
FTP 209 294 243 182 254 211 87.08% yes

Shoutcast 160 4,335 2,481 142 4,085 2,304 88.75% yes

(2)

BitTorrent 5,034,169 434,230 294,422 14,720 111 5.3 0.29% yes
Kademlia 1,222,167 4,273 284 0 0 0 0.00% -

eMule 290,101 98,558 71,112 0 0 0 0.00% -
Steam 179,910 2,872 955 88 10 0.9 0.05% -
Skype 172,171 66,861 26,221 236 1.5 0.10 0.14% yes

Ares 10,990 2,407 271 0 0 0 0.00% -
XboxLive 6,564 2,148 288 7 2.7 0.08 0.11% -

HalfLife 3,832 57 2.7 2 0.01 0.001 0.05% -
Roblox 364 25,595 5,297 0 0 0 0.00% -

(3)
DNS 1,817,572 9,620 581 0 0 0 0.00% yes

Unknown 1,717,714 374,586 136,876 209,127 28,867 8,651 12.17% -
Total: 15,583,507 2,446,723 1,667,969 4,220,466 1,074,286 841,076

b) c)
Protocol group Traffic with domain name Result of DNS

search
Distribution of flows

Flows Packets Bytes Traditional (1) P2P & G. (2) Other (3)
Traditional (1) 77.93% 73.33% 73.56% Success 94.69% 0.36% 4.96%

P2P & Games (2) 0.22% 0.02% <0.01% Failure 9.96% 60.77% 29.27%
Other (3) 5.92% 7.51% 6.29% All traffic: 32.91% 43.18% 22.69%
All traffic: 27.08% 43.91% 50.42%

Table 6.3: Results of traffic analysis in the Asnet1 dataset. Table 6.3a lists all
significant protocols in each group—traditional client-server (1), P2P & Games
(2), and Other (3)—and gives numerical values on the traffic and its dependency
on DNS. The last column indicates which protocols were chosen for experimen-
tal validation. Table 6.3b analyses how many flows, packets, and bytes in each
group have a domain name. Table 6.3c shows the distribution of flows among
the groups, depending on the result of the DNS Search algorithm.

57

(b) Conversely, if a flow does not have a domain name—and at the same
time it is not a DNS flow—then it is either P2P or Gaming with a
probability of >77%.

6.4 Experimental evaluation

In this section, we present the practice of using DNS-Class in a real network,
in different setups. We also compare DNS-Class to an established traffic classi-
fication method. The experiments were designed to evaluate the robustness of
DNS-Class and to assert that combining domain names with port numbers is
meaningful. The results are summarized in Table 6.4 (pp. 59).

6.4.1 Methodology

For each experiment, we start with tuning the algorithm parameters. Then, we
evaluate the classification performance and robustness: in experiments 2-4 we
employ 10-fold cross-validation on Asnet1 [45], and in experiment 5 we train
on whole Asnet1 and test on whole Asnet2.

For given protocol p, we measure the classification performance using two
complementary metrics of True Positives (%TPp) and False Positives (%FPp):

%TPp =
|TPp|
|Fp|

· 100%, %FPp =
|FPp|
|F ′p|

· 100%, (6.10)

where TPp is the set of true positives for protocol p, Fp is the set of testing
flows that belong to p, FPp is the set of false positives for p, and F ′p is the set of
all testing flows that do not belong to p. For measuring the overall DNS-Class
performance, we simply adopt the average for all protocols:

%TP =

∑
p %TPp

|P |
, %FP =

∑
p %FPp

|P |
. (6.11)

where P is the set of all traffic classes p. For more background, see Chapter 3
of the thesis, where we presented a more generic definition of %TP and %FP .

Note that we could compute the weighted averages according to the number
of flows in each class. However, the result would be heavily biased towards the
HTTP class, which holds the vast majority of flows. In most of our experiments,
the results for HTTP were close to perfect values, whereas the results for other
classes were worse. Thus, by adopting an average instead of weighted average
we make our evaluation scheme more demanding. That said, for completeness
we also present the averages weighted by the number of flows in each class: the
%TPw and %FPw metrics.

6.4.2 Experiments

1) Traditional port number classifier (Figures 6.5 and 6.6): We began our ex-
periments by evaluating a port number classifier on our datasets. We chose
the CAIDA Coral Reef suite version 3.9.1 as our reference implementation [84].
Note that port-based classification has limitations, as discussed in several pa-
pers [81]. However, it can classify both encrypted and unencrypted flows using

58

a)
FPlayer FTP HTTP HTTPS Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent %TP %FP

FPlayer 49.0% 35.5% 15.4% 49.0% <0.1%
FTP 46.2% 53.8% 46.2% <0.1%

HTTP <0.1% <0.1% 99.0% 1.0% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% 99.0% 31.0%
HTTPS <0.1% 35.4% 63.3% 0.4% 0.3% 0.6% <0.1% <0.1% <0.1% 63.3% 1.0%
Jabber 0.1% 30.7% 69.2% 69.2% <0.1%
Kasp. 100.0% 100.0% <0.1%
Mail 5.8% 0.1% 94.1% 94.1% 0.1%
NTP 0.1% 99.9% 99.9% <0.1%

RTMP 27.6% 72.4% 72.4% <0.1%
SSH 1.4% 98.6% 98.6% <0.1%

STUN 0.1% 1.9% 98.0% 98.0% <0.1%
Shcast 7.3% 92.7% 92.7% <0.1%
Skype 1.0% 99.0% 99.0% <0.1%
Torrent 31.4% 0.1% 68.6% 68.6% <0.1%

Average: 82.1% 2.3%
b)

FPlayer FTP HTTP HTTPS Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent %TP %FP
FPlayer 96.3% <0.1% 3.7% 96.3% <0.1%

FTP 99.9% <0.1% 99.9% <0.1%
HTTP 100.0% 100.0% <0.1%

HTTPS 100.0% 100.0% 0.3%
Jabber 100.0% 100.0% 0.0%
Kasp. 74.9% 25.1% 25.1% 0.0%
Mail <0.1% 99.9% 99.9% 0.0%
NTP 100.0% 100.0% 0.0%

RTMP <0.1% 0.4% 1.4% 98.1% 98.1% 0.0%
SSH 100.0% 100.0% 0.0%

STUN 0.5% 99.5% 99.5% <0.1%
Shcast 0.9% 6.8% 92.2% 92.2% 0.0%
Skype 1.7% 98.3% 98.3% 0.0%
Torrent <0.1% 0.6% <0.1% 0.1% 99.3% 99.3% 0.0%

Average: 93.5% <0.1%
c)

FPlayer FTP HTTP HTTPS Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent %TP %FP
FPlayer 99.9% <0.1% 0.1% 99.9% <0.1%

FTP 99.9% 0.1% 99.9% 0.0%
HTTP 99.9% <0.1% 99.9% <0.1%

HTTPS <0.1% 99.8% 0.2% <0.1% 99.8% <0.1%
Jabber 100.0% 100.0% 0.0%
Kasp. 100.0% 100.0% <0.1%
Mail 100.0% 100.0% 0.0%
NTP 100.0% 100.0% 0.0%

RTMP 0.2% 0.3% 99.4% 99.4% <0.1%
SSH 100.0% 100.0% 0.0%

STUN 100.0% 100.0% <0.1%
Shcast <0.1% 0.9% 99.1% 99.1% <0.1%
Skype 99.9% <0.1% 99.9% 0.0%
Torrent 0.9% <0.1% <0.1% 99.1% 99.1% <0.1%

Average: 99.8% <0.1%
d)

FPlayer FTP HTTP HTTPS Jabber Kasp. Mail NTP RTMP SSH STUN Shcast Skype Torrent %TP %FP
FPlayer 90.8% 0.3% 5.3% 3.6% 90.8% <0.1%

FTP 98.7% 1.3% 98.7% <0.1%
HTTP <0.1% <0.1% 99.8% <0.1% 0.2% <0.1% 99.8% <0.1%

HTTPS 99.9% 0.1% 99.9% <0.1%
Jabber 100.0% 100.0% <0.1%
Kasp. 100.0% 100.0% <0.1%
Mail 100.0% 100.0% <0.1%
NTP 100.0% 100.0% 0.0%

RTMP 0.4% 0.8% 0.4% 98.4% 98.4% 0.1%
SSH 100.0% 100.0% 0.0%

STUN 100.0% 100.0% <0.1%
Shcast 1.6% 1.0% 97.5% 97.5% <0.1%
Skype 100.0% 100.0% 0.0%
Torrent 0.2% <0.1% <0.1% 99.8% 99.8% 0.0%

Average: 98.9% <0.1%

Table 6.4: Results of experiments: 10-fold cross-validation The tables present
confusion matrices and performance metrics for the experiments 2-5 described
in Section 6.4.2: a) domain name classification, b) port number classification,
c) full DNS-Class, and d) performance after 8 months since training.

59

Figure 6.5: Performance of the standard Coral Reef port number classifier, for
all flows in groups (1) and (2) (see Table 6.3). The %TP metric is 33%, 29%,
and 28%—for flows, packets, and bytes, respectively.

Figure 6.6: Performance of the same classifier as in Figure 6.5, but evaluated
only on the named flows of selected protocols. %TP is 52%, 47%, and 45%—for
flows, packets, and bytes, respectively.

just 1 packet. Thus, although not perfect, port-based classification has similar
characteristics to DNS-Class, which enables a qualitative comparison.

First, we evaluated the port-based classifier on all protocols in groups (1)
and (2) defined in Section 6.3. Because the classifier does not need training,
we used all flows in Asnet1 for testing. As expected, the method presented
good results for some classes, but in most cases it failed: the %TP metric was
33%, as visible in Figure 6.5 (the figure also presents %TP for packets and
bytes, computed similarly). For comparison with DNS-Class, we evaluated the
port-based classifier on our target traffic, i.e. on named flows. The performance
improved, but still was quite low: %TP of 52%, as visible in Figure 6.6.

2) DNS-Class: domain names (Table 6.4a): In experiment 2, we run our
algorithm on sole DNS features, i.e. we classified the traffic using only the
domain name (neglecting the transport protocol and the port number). Using
software options, we forced our algorithm to ignore the last two tokens in the
input data (see Section 6.2.2). We trained and tested the system using the
Asnet1 dataset. Results are presented in Table 6.4a, with %TP and %FP of
82.1% and 2.3%, respectively (%TPw and %FPw of 95.8% and 27.9%).

The three most common errors made by the algorithm were classifying
www.facebook.com:443/TCP, www.google.com:443/TCP, and interia.hit.-

gemius.pl:443/TCP as HTTP instead of HTTPS.
3) DNS-Class: port numbers (Table 6.4b): Conversely to the previous ex-

periment, here we ignored the domain name and used only the port number and
the transport protocol (see Section 6.2.2). Using the same dataset, we obtained
the results presented in Table 6.4b, with %TP and %FP of 93.5% and <0.1%,
respectively (%TPw and %FPw of 99.7% and <0.1%, respectively).

For this experiment, the most common errors were connected with the
Kaspersky protocol, e.g. erroneously classifying ksn2-12.kaspersky-labs.-

com:443/TCP as HTTPS.

60

4) DNS-Class: domain names and port numbers (Table 6.4c): Finally, in
experiment 4 we evaluated the full DNS-Class algorithm, i.e. classification by
domain name, port number, and transport protocol name. This is the main
experiment that presents full capabilities of our algorithm. Again, we employed
the Asnet1 dataset and 10-fold cross-validation. On average, we obtained %TP
of 99.8% and %FP of <0.1% (%TPw and %FPw of 99.9% and <0.1%), which
is displayed in greater detail in Table 6.4c.

The most common source of errors were due to the HTTPS, BitTorrent,
and Shoutcast protocols. For example, petelo.streams.bassdrive.com-

:80/TCP was incorrectly classified as HTTP instead of Shoutcast. How-
ever, we also found a few errors in the ground-truth, e.g. textual inputs like
www.facebook.com:80/TCP and plus.google.com:80/TCP were incorrectly at-
tributed to the BitTorrent protocol instead of HTTP.

5) Temporal stability (Table 6.4d): In experiment 5, we evaluated the tem-
poral stability of DNS-Class, i.e. whether a classification model can be used in
the same network after a longer period of time. We created the model using
Asnet1, but for testing we took the Asnet2 dataset, collected after 8 months.
We obtained %TP and %FP of 98.9% and <0.1%, respectively (%TPw and
%FPw of 99.8% and <0.1%). Detailed results are given in Table 6.4d.

Many errors were due to the FlashPlayer protocol: DNS-Class failed
for inputs like telegraph.justin.tv:443/TCP incorrectly classifying them as
HTTPS. Again, we noticed a few errors in the ground-truth labels, e.g. www.-

facebook.com:443/TCP attributed to BitTorrent instead of HTTPS.

6.5 Discussion

Practical evaluation of DNS-Class on real Internet traffic showed that:
1. Traditional port number classifier is unreliable for the traffic targeted by

DNS-Class. We evaluated CoralReef port number classifier on named
flows, and the experiment showed that, as expected, it could not replace
DNS-Class due to poor performance (%TP of 52%).
(a) Classifying only by port number is unreliable also in the general case

of all flows, i.e. named and anonymous flows. This was demonstrated
in several papers (e.g. [81]) and in our experiment 1 (see Figure 6.5).
The classifier worked properly for traditional protocols (e.g. NTP),
but failed for newer P2P protocols (e.g. BitTorrent).

(b) The %TP metric for port number classification was better in the
case of narrowing the traffic to named flows only (Figure 6.6). For
example, %TP improved for RTMP and BitTorrent, which shows
an increase in performance at the cost of smaller scope.

2. Domains alone are insufficient for successful traffic classification. Exper-
iment 2 (Table 6.4a) demonstrated that in 7 out of 14 traffic classes it was
not possible to reliably identify the traffic using just the domain name.
(a) The HTTP class collected majority of wrong classifications (%FP of

31%). This is due to popularity of this class, and because the set of
words in website domains stands for a huge portion of tokens that
DNS-Class can find in domain names of other protocols.

(b) We noticed poor performance for FTP and FlashPlayer classes
(%TP below 50%), and moderate results for HTTPS, Jabber, RTMP,

61

and BitTorrent (%TP below 90%). Probably, domain names of
these protocols contain small number of tokens that could distinguish
them from the dominant class.

(c) There exist domains that are used for delivering more than one service
at the same time—for example, poczta.o2.pl: an e-mail service
delivered through traditional SMTP/POP3 protocols, and through
a web interface over HTTPS.

3. Port number is an important traffic feature for named flows. Experiment 3
(Table 6.4b) proved that in DNS-Class, port numbers can be used for
successful classification in many cases, with %TP and %FP of 93.5% and
<0.1%, respectively.
(a) DNS-Class employs an ML algorithm (instead of relying on a static

database), hence it learns the port numbers from the dataset.
(b) The system was able to properly classify named flows of P2P pro-

tocols: BitTorrent (%TP of 99.3%) and Skype (%TP of 98.3%),
with no false positives.

(c) The HTTP and HTTPS classes collected majority of errors, because
several other protocols use the port numbers 80 and 443, for example
Kaspersky, FlashPlayer, and Shoucast.

4. Full DNS-Class algorithm is reliable. In experiment 4 (Table 6.4c), DNS-
Class obtained %TP of 99.8% and %FP of <0.1%. This result demon-
strates that it is possible to classify a significant portion of Internet flows
using just the first packet and the flow name.
(a) Combining port numbers with domain names generally improved the

classification performance for each evaluated protocol.
(b) The HTTP class collected majority of errors due to the reasons al-

ready given in points 2a and 3c above, but with a much lower %FP
of <0.1%.

(c) DNS-Class proved to be better than our ground-truth method in a
few cases, as highlighted in Section 6.4.2, experiments 4 and 5.

5. DNS-Class is stable over time. In experiment 5 (Table 6.4d) we demon-
strated that one can use the same model for classifying traffic after 8
months since training. Our algorithm achieved %TP of 98.9%, still with
%FP below 0.1%.
(a) The overall system performance was worse than for a fresh model,

but still acceptable. The performance was lower because several new
services—and several new domain names—appeared on the Internet.

6. DNS-Class is effective for encrypted flows. The traffic datasets Asnet1
and Asnet2 used for experiments 4 and 5 (Tables 6.4c and 6.4d) con-
tained encrypted flows, e.g. HTTPS, SSH, and Skype. The DNS-Class
algorithm was able to classify this traffic with %TP close to 100% and
%FP close to 0%. Our method is thus effective for TLS flows.
(a) DNS do not provide confidentiality of data, and so is its extension,

the Domain Name System Security Extensions (DNSSEC). Thus,
it is unlikely that in near future the development of the Internet
infrastructure will prevent traffic classification using DNS.

(b) In terms of performance metrics, DNS-Class performed equally well
for encrypted and unencrypted traffic, e.g. for HTTPS and HTTP
traffic.

62

6.6 Related works

In this chapter, we refer to traffic classification as described in related survey pa-
pers of [28,70,105], in which traffic classes (or applications) usually correspond
to network protocols (e.g. FTP): see Tables I-III in [105], Table I in [28], and
Tables II-V in [70]. All of the major works on traffic classification evaluate the
performance of presented methods using various metrics, described in Sections
II-B in [105], IV-A in [28], and 4.6 in [70]. That said, we believe DNS-Class
is the first work that applies DNS to traffic classification while conforming to
the state of the art. Below we reference previous works that laid the necessary
groundwork, but which do not follow the standard practices in traffic classifica-
tion, for various reasons (e.g. different goals). However, these works introduced
many interesting and important ideas, foremost the idea of labeling IP flows
with domain names.

In a 2011 paper [117], D. Plonka and P. Barford present a system for flexible
traffic and host profiling using DNS. The system labels IP flows with domain
names and allows for two kinds of analysis: according to the presence of flow
name (named/unnamed) and according to the domain name (hierarchical anal-
ysis). The system also uses the domain names to attribute hosts to three P2P
profiles of “Torrent”, “Talk”, and “Game”. Then, the host profiles are used to
label traffic classes, in a scheme that the authors call “indirect DNS rendezvous
classification” (see Section IV-A2 in [117]). Comparing with DNS-Class, the
paper adopts traffic classes that do not reflect particular applications or proto-
cols (see Section V-B in [117]). The traffic traces used for experiments do not
have ground-truth labels. The authors do not present essential metrics on the
performance of their indirect classification method. Finally, the system employs
a static set of textual patterns instead of an ML approach, which is simpler, but
requires human work to match domain names with the traffic classes.

In Section 6.2.1 of this chapter, we describe an algorithm for labeling IP flows
with domain names that is similar to the one already used in [117]. However, our
algorithm also considers DNS records of MX type (SMTP servers), but ignores
AAAA records (IPv6 addresses). Moreover, in Section IV of [117], the authors
claim that “it is sufficient for the DNS pcap records to be observed before the
application traffic pcap records”. We find this questionable for the presented
algorithm. For example, if two different websites are hosted at the same IP
address, and the user connects to both of them in a short time, the off-line
database described in [117] would register only the latter query. Consequently,
labeling IP flows using such analysis would produce invalid results. In this
paper, we propose a flow labeling scheme without such deficiency.

In a 2012 paper [15], I. Bermudez et al. present “DN-Hunter”, a system
that leverages the information carried in DNS traffic to analyze Content De-
livery Networks (CDN). DN-Hunter labels flows with domain names, provides
fine-grained traffic visibility, tracks and analyzes CDNs and their content, and
determines popular network services running on given port number. The au-
thors describe the architecture of DN-Hunter (which consists of a real-time DNS
sniffer and an off-line analyzer), present DNS traffic characteristics, and apply
the system to real traffic traces. Comparing with DNS-Class, the work [15]
is devoted to a different goal of uncovering the global CDN structure and de-
scribing related network phenomena. Neither the DNS sniffer nor the off-line
analyzer is used for traffic classification. However, Sections 4.3 and 5.5 in [15]

63

present a method for automatic discovery of network applications that run on
any given port number, which resemble traffic classification, but targets port
numbers instead of IP flows and thus is different. Consequently, the authors do
not evaluate the performance of this method using classification metrics.

In Section 6.2.1 we describe DNS Search, which is equivalent to the DNS
sniffer introduced in Sections 3.1 and 6 of [15]. Comparing with our work, the
authors of [15] provide much deeper and more comprehensive analysis on the
practical deployment and dimensioning of the DNS sniffer. However, we re-
lease our implementation as open source code instead of pseudo-code, making it
readily available to other researchers. We also use hash tables instead of C++
maps, which is computationally faster. Another difference is in the procedure
of tagging IP flows using the Resolver database: in case there is no match for
given pair of client and server addresses, we additionally try the opposite direc-
tion, which can improve the hit ratio in some cases—for example, if the Flow
Tagger misses some packets and the flow direction is accidentally alternated.

Finally, in a 2013 paper [52], P. Fiadino et al. present “HTTPTag”: an on-
line HTTP classification system, able to identify web-based applications and
services. HTTPTag runs pattern matching on domain names extracted from
HTTP headers, using a set of hand-made regular expressions. The authors
claim that, using 380 regular expressions corresponding to 280 services, they
are able to “classify more than 70% of the overall HTTP traffic volume caused
by more than 88% of the web users in an operational 3G network”. While their
work has an alternative source of features and different goals than DNS-Class, it
introduces the significance of domain names in classifying web traffic. Our work
proposes a system that is more general (i.e. applies to many network protocols
instead of just HTTP) and learns from data using ML (i.e. without the need of
manual training).

6.7 Conclusions

In this chapter, we presented a novel practical system that immediately classifies
a considerable portion of Internet traffic using DNS information and first packets
of IP flows.

In Section 6.2, we described an algorithm that tags flows with domain names
and classifies them using ML. In Section 6.3, we analyzed DNS traffic in the
Asnet1 dataset, showing that e.g. 1) network protocols differ in how much they
depend on DNS, and 2) named flows are on average twice bigger than anonymous
flows, in terms of bytes. In Section 6.4, we demonstrated the robustness of
DNS-Class by evaluating it on two traces of real traffic, obtaining very good
performance results, which was discussed in Section 6.5. In Section 6.6, we
justified our contribution to the state of the art in traffic classification and we
commented on related works that analyze domain names.

We conclude that traffic classification using DNS gives very good results for
named flows. Our work can be a motivation to employ DNS information as a
traffic feature and to enrich flow exporting formats like Netflow or IPFIX with
flow domain names. In Section 6.2.3, we gave our original vision for DNS-Class
that explains its importance for TC. In next chapter, we build upon this vision
by introducing the Waterfall cascade classifier.

64

Chapter 7

The Waterfall architecture

In this chapter, we present the capstone of the thesis, which connects all of
the already presented concepts: an ML method for TC (see Chapters 3 and 2)
that adopts our software tools (see Chapter 4) to connect different TC methods
(see Chapters 5 and 6), with the goal of integrating many classifiers into one
effective TC system (see Chapter 1).

7.1 Introduction

As already motivated in the thesis introduction, TC needs methods for integrat-
ing results of various research activities. Many new papers describe methods
that in principle propose a set of traffic features optimized for another set of
network protocols [3,14,46,52,56,62,63]. Researchers promote their methods for
classifying network traffic, which are usually quite effective, but none of them
is able to exploit all observable phenomena in the Internet traffic and identify
all kinds of protocols.

The question arises: could we integrate these approaches into one system,
so that we move forward, building on the achievements of our colleagues? How
would this improve TC systems, in terms of accuracy, functionality, complete-
ness, and speed? Answering these questions can open new perspectives. A
robust method for combining classifiers can promote research that is more fo-
cused on new phenomena in the Internet, rather than addressing the same old
issues. We need a way to complement and develop our existing methods further.

This work describes a new, modular architecture for TC systems: the Wa-
terfall architecture. In a nutshell, it connects several classification modules in
a chain and queries them sequentially, as long as none of them replies with a
positive answer—i.e. the first module that identifies a flow wins. Typically, each
module is a dedicated and very accurate classifier that targets a subset of net-
work protocols, i.e. supports the rejection option (the “Unknown” class) [45].
The modules are ordered from the most reliable and specific to the most gen-
eral and CPU-intensive. Waterfall follows the scheme of cascade classification,
which is a type of classifier selection MCS technique (see Chapter 3).

The proposed architecture solves the integration problem. Each module can
exploit different traffic features and address different kinds of network protocols,
for example traditional client-server traffic, P2P, or tunneled traffic. The system

65

can be iteratively extended and updated as new network protocols emerge or
new functionality requirements arise. Surprisingly, adding more classifiers can
significantly reduce the total computation time (assuming proper ordering of
the modules), which is the main advantage of Waterfall over popular classifier
fusion approaches, e.g. BKS [41,87].

This chapter describes a novel method with the following contributions:
1. It is the first application of cascade classification to the field of traffic

classification (to the best of the knowledge of the authors). It represents
an alternative to the BKS method (see Sections 7.2 and 7.3).

2. Waterfall lets for integration of independent algorithms and for iterative
development of traffic identification systems, in a way similar to the divide
and conquer algorithm design paradigm (see Sections 7.3 and 7.4).

3. It has an open source implementation in Python that shows excellent
performance on real traffic and classifies flows in under 10 seconds of their
lifetime (see Section 7.4 and Experiment 1 in Section 7.5).

4. Practical operation shows reduction in computation time with the increase
in the number of modules, and that majority of traffic can be successfully
classified using simple methods (see Experiments 1 and 2 in Section 7.5).

5. Proposes a new avenue for the future directions in the field of traffic clas-
sification (see Section 7.6, which concludes the chapter).

7.2 Background

A näıve approach to the integration problem would be to survey recent papers
for traffic features and apply them as long feature vectors classified with a de-
cent ML algorithm. Even with adequate techniques employed, this could quickly
lead us to the curse of dimensionality : an exponential growth in the demand
for training data as the feature space dimensionality increases (see Chapter 3).
Besides, network flows differ in the set of available features, e.g. only a part
of Internet flows evoke DNS queries (see Chapter 6). Some features need more
packets to be computed, e.g. port number is available after 1 packet, whereas
payload statistics need 80 packets in [56] (see Chapter 5). This means that
different tools are needed for different protocols: some flows can be classified
immediately using simple methods, while others need more sophisticated anal-
ysis. Finally, from the software engineering point of view, a big, monolithic
system could be difficult to develop and maintain.

Instead, somes researchers adopted MCS—in particular, the BKS combina-
tion method that fuses outputs of many classifiers into one final decision. In
principle, the idea behind BKS is to ask all classifiers for their answers on a
particular problem x and then query a look-up table T for the the final deci-
sion. The table T is constructed during training of the system, by observing
the behavior of classifiers on a labeled dataset. For example, if an ensemble
of 3 classifiers replies (A,B,A) for a sample with a ground-truth label of B,
then the cell in T under index (A,B,A) is B (see Chapter 3). This powerful
technique can increase the performance of TC systems—as shown by Dainotti
et al. in [41]—but comparing with Waterfall, it inherently requires all modules
to be run on each traffic flow, with the drawback that the more modules are
used, the more processing power is required.

66

Figure 7.1: The Waterfall architecture. An IP flow is sequentially examined by
the modules. In case of no successful classification, it is rejected.

7.3 The Waterfall architecture

The Waterfall idea is presented in Figure 7.1. The input to the system is an IP
flow in form of a feature vector x, which contains all the features required by
all the modules, but a particular module will usually use only a subset of x.

The system sequentially evaluates selection criteria that decide which clas-
sification modules to use for the problem x. If a particular criterion is fulfilled,
the associated module is run. If it succeeds, the algorithm finishes. Other-
wise, or if the criterion was not satisfied, the process advances to the next step.
When there are no more modules to try, the flow gets rejected and is labeled as
“Unknown”. More precisely,

Deci(x) =

{
Classi(x) Criti(x) satisfied ∧ Classi(x) successful
Deci+1(x) otherwise

,

(7.1)
Decn+1(x) = Reject , (7.2)

where Deci is the decision taken at step i = {1, 2, . . . , n}, n is the number of
modules, Classi(x) is the protocol identified by the module i, and Criti(x) is
the associated criterion.

The selection criteria are designed to skip ineligible classifiers quickly. For
example, in order to implement a module that classifies traffic by analyzing the
payload size of the first 5 packets in a flow, the criterion could check if at least 5
data packets were already sent in each direction. If this condition is true, a CPU-
intensive ML algorithm could be run to try to identify the network protocol. In
practice, a considerable amount of IP flows would be skipped, saving computing
resources and avoiding classification with an inadequate method. On the other
hand, if a flow satisfies this criterion, it would be classified with a method that
does not need to support corner cases. The selection criteria are optional, i.e.
if a module does not have an associated criterion, it is always run.

67

7.4 Practical implementation

A reference implementation of the Waterfall architecture is available as open
source at [59]. It is implemented in C and Python in two parts: Flowcalc
modules, which prepare the flow feature vectors in form of ARFF files (see
Chapter 4), and Mutrics1, which classifies the flows.

The reference Mutrics classifier has several modules, described below. We
highlight that these modules are merely an example, whereas much more ad-
vanced modules are possible (see Chapter 5).

1) dstip : classification by destination IP address. During training, the
module observes which remote destinations uniquely identify network protocols.
If such particular IP address is popular enough, it is used as a rule for quick
protocol identification by single lookup in a hash table.

2) dnsclass : classification by DNS domain name of the remote host. In
Chapter 6, we described how to obtain the textual host names associated with
network flows and how to use this information for TC. This module imple-
ments the DNS-Class algorithm and extends it with a mechanism for detecting
unknown protocols. The selection criterion checks if a particular flow has an
associated DNS name, or whether it is a DNS query-response flow.

3) portsize : classification by the port number and packet size. In a way
similar to dstip, the module observes which tuples of transport protocol, port
number, and payload size of the first packets in both directions uniquely identify
network protocols. Popular tuples are stored in a hash table. The selection
criterion checks if the flow feature vector contains packet payload sizes.

4) npkts : classification by packet sizes. Uses payload sizes of the first 4
packets in both directions, plus the transport protocol and the port number.
Employs the random forest ML algorithm, which is a multi-classifier that com-
bines decision trees [45,87]. The selection criterion is the same as in portsize.

5) port : classification by the port number. The module uses the classic pair
of transport protocol and port number to find the pairs that uniquely and reli-
ably identify network protocols, similarly to dstip and portsize. Classification
requires a single lookup in a hash table.

6) stats : classification by flow statistics. The module uses the same ML
algorithm as npkts. As features, it uses the following statistics of packet sizes
and inter-arrival times in both directions: the minimum, the maximum, the
average, and the standard deviation—i.e. a total of 16 statistics.

The Flowcalc part of the system, responsible for computing the feature
vectors, was limited to only consider the first 10 seconds of traffic in each flow.
This simulates a real-time scenario in which the network protocol must be iden-
tified under a given time limit. All experiments presented in the next section
were run with such constraints to demonstrate real-time traffic classification.

7.5 Experiments

In this section, the results of two experiments are presented: 1) classification
performance on real network traffic, and 2) effect of adding new modules.

1The name comes from “Multilevel Traffic Classification”

68

7.5.1 Methodology

Four traffic datasets were used for experimental validation: a) Asnet1, col-
lected at a Polish ISP company serving <500 residential customers, b) Asnet2,
collected at the same network, c) IITiS1, collected from the network of the
IITiS institute serving <50 academic users, and d) Unibs, collected from the
campus network of the University of Brescia serving 20 workstations2. The As-
net1 and Asnet2 datasets were collected at the same gateway router, but with
a time gap of 8 months. The Asnet1 and IITiS1 datasets were collected at
different networks, but at the same time. The Unibs dataset was collected a
few years earlier than the other datasets, contains no packet payload, and has
the IP addresses anonimized. Details are presented in Table 7.1e (pp. 72).

DPI was employed for establishing the ground-truth labels on the datasets
(a)-(c). Note that DPI is not perfect—as shown by Dusi et al. [48]—but it is
the most popular method used in the literature, and often the only practically
available. The libprotoident v. 2.0.7 was used as the DPI software (reported
to offer very good accuracy in [21]). The Unibs dataset already contained
ground-truth and was not suitable for DPI because of no payload data. Finally,
the datasets were sanitized by dropping flows that had no data transmitted
in both directions, e.g. incomplete TCP sessions and empty UDP flows. The
datasets contain different subsets of network protocols (see Table 7.1).

For measuring the classification accuracy for a given protocol p, the popular
%TPp and %FPp metrics were employed:

%TPp =
|TPp|
|Fp|

· 100%, %FPp =
|FPp|
|F ′p|

· 100%, (7.3)

where TPp is the set of true positives for protocol p, Fp is the set of all testing
flows for protocol p that were classified, FPp is the set of false positives for p, and
F ′p is the set of all testing flows for all protocols except p that were classified.
For evaluating the overall accuracy, the average values of these metrics were
used—the %TP and %FP metrics—which were complemented with the %Unk
metric that measures the amount of rejected flows:

%Unk =
|U |
|F |
· 100%, (7.4)

where U is the set of rejected flows, and F is the set of all testing flows.
For dividing the data into training and testing parts, a 60%/40% split was

used on Asnet1 and on Unibs, i.e. 60% of their flows were randomly selected
for training, and 40% for testing. The classifier trained on Asnet1 was validated
on the rest of Asnet1 (to evaluate the “classical” classification performance),
and on the whole Asnet2 and IITiS1 datasets (so as to demonstrate stability in
time and space). The classifier trained on Unibs was validated only on the rest
of the Unibs dataset: this tested operation on a trace without packet payloads.

7.5.2 Results

In the Experiment 1, the system was evaluated for classification performance
on the datasets (a)-(d), with 5 modules enabled: dstip, dnsclass, portsize,

2Downloaded from http://www.ing.unibs.it/ntw/tools/traces/

69

http://www.ing.unibs.it/ntw/tools/traces/

Figure 7.2: Experiment 1: amount of traffic passing through successive waterfall
steps, for datasets: a) Asnet1, b) Asnet2, c) IITiS1, and d) Unibs. 5 modules
were enabled; “dns” means dnsclass and “portsz” means portsize.

npkts, and port. For the Unibs dataset, stats was used instead of dnsclass,
because this dataset had no DNS payload packets.

The results in form of confusion matrices and performance metrics are pre-
sented in Table 7.1, parts (a)-(d). For all datasets, the %TP and %FP met-
rics were close to 100% and 0% respectively, which indicates high classification
performance of the system. The classifier successfully identified all protocols,
including: BitTorrent, Skype, Kademlia, SSH, STUN, WWW, and more.
For the IITiS1 dataset, the system made no errors in classifying over 1.5 million
flows; for other datasets, the number of errors was well below 0.1%. The %Unk
metric was 0.1%, 0.4%, 1.1%, and 1.4%, for Asnet1, Asnet2, IITiS1, and
Unibs, respectively—i.e. almost all flows were classified.

Figure 7.2 shows traffic progress through the system: the figure presents the
percentage of IP flows at the input of successive modules. An IP flow leaves the
system as soon as it gets classified, so the figure visualizes how many flows get
through the end of the waterfall. It is apparent that the amount of traffic that
a particular module can classify depends on the dataset. For all datasets, more
than half of the flows were classified using simple methods—namely the dstip,
dnsclass, and portsize modules—without the need to run the npkts module,
which employs a sophisticated ML algorithm.

In the Experiment 2, the effect of increasing the number of modules was
studied. The system started in configuration with only one module enabled:
the npkts module, which is CPU-intensive. In each iteration, one new module
was added—usually at the front of the waterfall—and the whole system was
given the task of classifying the same dataset. The experiments were run in
separation of each other, on a single core of an Intel Core i7 machine3 (i.e.

3Intel Core i7-930 2.80GHz, 8GB RAM, 128GB SSD

70

Figure 7.3: Experiment 2: effect of adding modules on computation time (bars)
and on the number of unknown flows (lines), for datasets a) Asnet1, b) As-
net2, c) IITiS1, and d) Unibs.

single-threaded implementation). The time needed to finish the computations
was measured relatively to the first run. The amount of unclassified flows was
measured in absolute numbers.

The results are displayed in Figure 7.3. The computation time generally
decreased with new modules being enabled. The modules were added in the
following order: npkts, dnsclass, portsize, dstip, and port—that is, from
most to least CPU demanding. Motivation for this was to resemble a scenario in
which a generic TC algorithm is iteratively augmented with dedicated classifiers.
In each iteration, the number of unclassified flows dropped. The %TP and %FP
metrics were stable and close to perfect values.

7.6 Conclusions

This chapter presented Waterfall—a novel, modular architecture for TC that
lets for integration of many algorithms and exhibits a decrease in the total
computation time with new modules being added. An illustrative, open source
implementation of the system—the Mutrics classifier—showed very good per-
formance results on 4 real traffic datasets, in a scenario that resembles real-time
traffic classification. The paper experimentally proved that the majority of IP
flows can be immediately classified using simple methods, which exploit basic
traffic features like: destination IP address, DNS domain name, and packet size.

The chapter concludes with a positive answer to the question whether many
independent traffic classification algorithms could be integrated, giving good
results in terms of many metrics.

71

a)
Protocol Flows A B C D E F G H I J K L M %TP %FP

A = BitTorrent 799,234 99.9% <0.1% <0.1% 99.9% <0.1%
B = DNS 723,478 100% 100% 0%
C = eMule 75,555 99.9% <0.1% 99.9% <0.1%
D = Jabber 1,388 100% 100% 0%
E = Kademlia 148,824 100% 100% <0.1%
F = Kaspersky 17,479 100% 100% 0%
G = Mail 7,982 100% 100% 0%
H = NTP 3,506 100% 100% 0%
I = Skype 55,070 <0.1% <0.1% <0.1% 99.9% 99.9% <0.1%
J = SSH 3,620 100% 100% 0%
K = Steam 50,963 100% 100% 0%
L = STUN 6,828 100% 100% 0%
M = WWW 1,695,282 100% 100% <0.1%

3,589,209 Avg. 99.9% <0.1%

b)
Protocol Flows A B C D E F G H I J K L M %TP %FP

A = BitTorrent 4,788,510 99.9% <0.1% <0.1% <0.1% <0.1% <0.1% 99.9% <0.1%
B = DNS 1,810,622 100% 100% 0%
C = eMule 172,676 <0.1% 99.9% <0.1% 99.9% <0.1%
D = Jabber 3,110 100% 100% 0%
E = Kademlia 308,926 <0.1% 99.9% <0.1% <0.1% 99.9% <0.1%
F = Kaspersky 46,475 96% 4% 96% <0.1%
G = Mail 42,055 100% 100% 0%
H = NTP 10,940 100% 100% 0%
I = Skype 112,748 0.1% 0.5% 99.4% 99.4% <0.1%
J = SSH 6,223 100% 100% <0.1%
K = Steam 78,167 <0.1% 99.9% 99.9% 0%
L = STUN 12,009 <0.1% 99.9% 99.9% <0.1%
M = WWW 3,828,118 <0.1% 99.9% 99.9% <0.1%

11,220,579 Avg. 99.6% <0.1%

c)
Protocol Flows A B C D E F G H %TP %FP

A = BitTorrent 8,811 100% 100% 0%
B = DNS 1,018,193 100% 100% 0%
C = Jabber 137 100% 100% 0%
D = Mail 108,296 100% 100% 0%
E = NTP 4,827 100% 100% 0%
F = Skype 21 100% 100% 0%
G = SSH 17,764 100% 100% 0%
H = WWW 624,511 100% 100% 0%

1,782,560 Avg. 100% 0%

d)
Protocol Flows A B C D E %TP %FP

A = BitTorrent 2,928 99.8% 0.1% <0.1% 99.8% <0.1%
B = eMule 5,600 99.9% <0.1% 99.9% <0.1%
C = Mail 1,971 99.3% 0.7% 99.3% <0.1%
D = Skype 1,484 0.1% 99.8% 0.1% 99.8% 0%
E = WWW 18,798 <0.1% 99.9% 99.9% 0.2%

30,781 Avg. 99.7% 0.1%

e)
Dataset Start Duration Src. IP Dst. IP Packets Bytes Avg. Util Avg. Flows

(/5 min.) Payload

Asnet1 2012-05-26 17:40 216 h 1,828 K 1,530 K 2,525 M 1,633 G 18.0 Mbps 7.7 K 92 B

Asnet2 2013-01-24 16:26 168 h 2,503 K 2,846 K 2,766 M 1,812 G 25.7 Mbps 12.0 K 84 B

Iitis1 2012-05-26 11:19 220 h 32 K 46 K 150 M 95 G 1.0 Mbps 753.7 180 B

Unibs 2009-09-30 11:45 58 h 27 1 K 33 M 26 G 0.9 Mbps 111.7 0 B

Table 7.1: Experiment 1: classification performance and the datasets. Metrics
for validation on 4 real traffic datasets: a) Asnet1, b) Asnet2, c) IITiS1, and
d) Unibs. Part e) presents details on the datasets used in the paper.

72

Chapter 8

Optimizing cascade
classifiers

Building upon the ideas presented in the previous Chapter 7, below we show
how to optimize a Waterfall TC system for desired performance. We describe
an algorithm that quickly simulates all cascade configurations for a pool of
classifiers, which lets for minimizing CPU time, number of errors, and situations
in which IP flows are left unrecognized. Besides the content presented below, we
guide the reader again to Chapter 2 for background on designing TC systems,
which puts TC performance in context of specific networks and their needs.

8.1 Introduction

The Waterfall architecture integrates many different classifiers in a cascade.
The system sequentially evaluates module selection criteria and decides which
modules to use for a given classification problem x. If a particular module
is selected and provides a label for x, the algorithm finishes. Otherwise, the
process advances to the next module. If there are no more modules, the flow is
labeled as “Unknown”.

We described cascade classifiers and other MCS techniques in Chapter 3.
Interestingly, although cascade classifiers were first introduced in 1998 by E.
Alpaydin and C. Kaynak [8], so far few authors considered the puzzle of optimal
cascade configuration that would match Waterfall. In a 2006 paper [32], K.
Chellapilla et al. propose a cascade optimization algorithm that updates the re-
jection thresholds of the constituent classifiers. The authors apply an optimized
depth first search to find the cascade that satisfies given constraints on time and
accuracy. However, comparing with this work, their system does not optimize
the ordering of modules. In another paper on this topic, published in 2008 by
A. Sherif [1], the author proposes a greedy approach for building cascades: i.e.,
start with a generic solution and sequentially prepend a module that reduces
CPU time. Comparing with this work, that algorithm does not evaluate all
possible cascade configurations and thus can lead to suboptimal results. We
will demonstrate this in Section 8.5 using a myopic optimizer.

Thus, we propose a new solution to the cascade classification problem, which
is better suited for traffic classification than existing methods. Note that com-

73

paring with [32] we do not consider rejection thresholds as input values to the
optimization problem. Instead, in case of classifiers with tunable parameters,
one could consider the same module parametrized with different values as sep-
arate modules, and apply our technique as well. For instance, a Bayes classifier
with rejection thresholds on the posterior probability of 0.5, 0.75, 0.90 would be
considered as 3 different classifiers.

8.2 Problem statement

Let us consider the problem of optimizing a cascade of classifiers. Let F be a
set of IP flows, and E be a set of n classification modules,

E = {1, . . . , n} (8.1)

that we want to use for cascade classification of flows in F in an optimal way.
In other words, we need to find a sequence of modules X,

X = (x1, . . . , xm) m ≤ n, xi ∈ E, xi 6= xj for i6=j (8.2)

that minimizes a cost function C,

C(X) = f(TX) + g(EX) + h(UX) (8.3)

where the terms TX , EX , and UX respectively represent the total amount of
CPU time used, the number of errors made, and the number of flows left un-
labeled while classifying F with X. The terms f , g, and h denote arbitrary
real-valued functions. Because m ≤ n, some modules may be skipped in the op-
timal cascade. Note that UX does not depend on the order of modules, because
unrecognized flows always traverse till the end of the cascade.

8.3 Proposed solution

To find the optimal cascade, we propose to simulate the performance of every
possible X by measuring the performance of each module separately, and then
smartly combining the results.

Note that for an accurate solution one would basically need to run the full
classification process for all permutations of all combinations in E. This would
take S experiments, where

S =

n∑
i=1

n!

(n− i)!
≈ e · n! (8.4)

which is impractical even for small n. On another hand, fully theoretical models
of the cost function seem infeasible too, due to the complex nature of the cascade
and module inter-dependencies.

Thus, we propose an approximate solution to the cascade optimization prob-
lem. The algorithm has two evaluation stages described below:

A. Static: classify all flows in F using each module in E, and
B. Dynamic: find the X sequence that minimizes C(X).

74

Figure 8.1: Measuring performance of module x ∈ E.

A. Static Evaluation

In every step of stage A, we classify all flows in F using each single module x ∈ E.

We measure the average CPU time used for flow selection and classification: t
(x)
s

and t
(x)
c . We store each output flow identifier in one of the three outcome sets,

depending on the result: F
(x)
S , F

(x)
O , or F

(x)
E . These sets hold respectively the

flows that were skipped, properly classified, and improperly classified. Let us

also introduce F
(x)
R ,

F
(x)
R = F \ (F

(x)
S ∪ F (x)

O ∪ F (x)
E) (8.5)

that is, the set of rejected flows. See Fig. 8.1 for an illustration of the module
measurement procedure. As the result of every step, the performance of module
x on F is fully characterized by a tuple P (x),

P (x) = (F, t(x)s , t(x)c , F
(x)
S , F

(x)
O , F

(x)
E). (8.6)

Finally, after n steps of stage A, we obtain n tuples: a model of our classification
system, which is the input to stage B.

B. Dynamic Evaluation

Having all of the required experimental data, we can quickly estimate C(X) for
arbitrary X. Because f, g, h, are used only for adjusting the cost function—and
can be modified by the network administrator according to the needs—we focus
only on their arguments, i.e. the cost factors TX , EX , and UX .

Let X = (x1, . . . , xi, . . . , xm) represent certain order and choice of modules,
and Gi represent the set of flows entering the module number i, so that:

G1 = F (8.7)

Gi+1 = Gi \ (F
(xi)
O ∪ F (xi)

E) 1 ≤ i ≤ m (8.8)

Then, we estimate the cost factors using the following procedure:

TX ≈
m∑
i=1

|Gi| · t(xi)
s + |Gi \ F (xi)

S | · t(xi)
c (8.9)

EX =

m∑
i=1

|Gi ∩ F (xi)
E | (8.10)

UX = |Gm+1| (8.11)

where |G| denotes the number of flows in set G.

75

Note that the difference operator in Eq. 8.8 connects the static cost factors
with the dynamic effects of a cascade. In stage A, our algorithm evaluates static
performance of every module on the entire dataset F , but in stage B we want to
simulate cascade operation, so we need to remove the flows that were classified
in the previous steps. Thus, the operation in Eq. 8.8 is crucial.

Module performance depends on its position in the cascade, because pre-
ceding modules alter the distribution of traffic classes in the flows conveyed
onward. For example, we can improve accuracy of a port-based classifier by
putting a module designed for P2P in front of it, which should handle the flows
that misuse the traditional port assignments.

8.4 Discussion

In our solution, we reduced the number of experiments from e · n! (see Eq. 8.4)
down to n, which is an extreme improvement that makes cascade optimization
practical. Another optimization comes from reducing the number of computa-
tions: when a new module xj is added to an already simulated cascade X, we
can re-use previous computations for X as follows:

Gj = UX (8.12)

TX+xj
≈ TX + |Gj | · t(xj)

s + |Gj \ F
(xj)
S | · t(xj)

c (8.13)

EX+xj = EX + |Gj ∩ F
(xj)
E | (8.14)

UX+xj
= Gj \ (F

(xj)
O ∪ F (xj)

E) (8.15)

Thus, we suggest searching for the minimum C(X) in a recursive algorithm.
However, note that although simulation is orders of magnitude faster than

experimentation, we still check every possible cascade. This makes the time
complexity of our algorithm factorial, considering set computations as the ele-
mentary operations. This leaves space for further improvements by introducing
another set of heuristics tuned to a specific cost function.

Moreover, note that the results depend on F : the optimal cascade depends
on the protocols present in the traffic, and on the ground-truth labels. The
presented method cannot provide the ultimate solution that would match every
network, but it can optimize a specific cascade system for a specific network.
We discuss this issue in Section 8.5 and in Chapter 2.

We assume that the flows are independent of each other, i.e. labeling a par-
ticular flow does not require information on any other flow. If such information
is needed, e.g. flow DNS names, it should be extracted before the classification
process starts. Thus, traffic analysis and flow classification must be separated
to uphold this assumption. We successfully implemented such systems for our
DNS-Class and Mutrics classifiers (see Chapters 6 and 7, respectively).

In the next Section, we experimentally validate our method and show that it
perfectly predicts EX and UX , and approximates TX properly. The simulated
cost follows the real cost, so we claim our proposal is valid and can be used in
practice. We also analyze the trade-offs between speed, accuracy, and ratio of
unlabeled flows, to stress out that the final choice of the cost function should
depend on the purpose of the system.

76

Dataset Start Duration Src. IP Dst. IP Packets Bytes Avg. Util Avg. Flows
(/5 min.) Payload

Asnet1 2012-05-26 216 h 1,800 K 1,500 K 2,500 M 1,600 G 18 Mbps 7.7 K 92 B

Asnet2 2013-01-24 168 h 2,500 K 2,800 K 2,800 M 1,800 G 26 Mbps 12 K 84 B

IITiS1 2012-05-26 216 h 32 K 46 K 150 M 95 G 1.0 Mbps 750 180 B

Unibs1 2009-09-30 58 h 27 1 K 30 M 26 G 0.9 Mbps 110 0 B

2013-02-25 65 d 90 K 18 K 37 M 33 G 51 Kbps 68 full
2013-11-18 35 d 7.5 K 54 K 43 M 31 G 88 Kbps 49 full

UPC1

Table 8.1: Datasets used for experimental validation.

Module ML algorithm Traffic features
dnsclass linear SVM DNS name
dstip lookup table destination IP address
npkts random forest payload sizes: first 4 packets in+out
port lookup table destination port number

portsize lookup table payload sizes: first packet in+out
portname lookup table DNS name
stats random forest 4 basic statistics of packet sizes and inter-arrival times

Table 8.2: Waterfall modules used for experimental validation.

8.5 Experimental validation

Below we present the outcome of using real traffic datasets for experimental
evaluation of our proposal. We ran 4 experiments:

1. comparing simulation with reality, which proves validity of Eqs. 8.9-8.11;
2. analyzing the effect of cost function parameters on the result, which demon-

strates optimization for different goals;
3. optimizing on one dataset and using the cascade on another dataset, which

evaluates stability;
4. comparing our optimization method with myopic and random cascade

optimization, which shows that our work is meaningful.
For the experiments, in general we used 5 datasets, summarized in Table 8.1.
Datasets Asnet1 and Asnet2 were collected at the same ISP serving <500
domestic users, with an 8-month time gap. Dataset IITiS1 was collected at
an academic network serving <50 researchers, at the same time as Asnet1.
Dataset Unibs1 was also collected at an academic network—at the University
of Brescia [50]—but a few years earlier and using a reliable ground-truth infor-
mation [73] (this dataset was anonymized). Finally, the UPC1 dataset was arti-
ficially generated—with manual simulation of different human behaviors—hence
it contains full packet payloads and the names of applications that generated
the traffic flows [22,29,31].

For the first 3 datasets, we established ground-truth using light DPI [6].
For Unibs1 and UPC1, we used the supplied ground-truth information, which
sometimes was challenging: for example, a skype process generates some HTTP
traffic apart of the Skype protocol. For each dataset, we trained the modules
using 60% random sample of all flows, and used the remainder for testing. We
considered only the first 10 seconds of each flow to resemble a near-immediate
traffic identification.

77

0 20 40 60 80 100
Estimated time [sec]

0

20

40

60

80

100

R
ea

l
ti
m

e
[s

ec
]

Figure 8.2: Experiment 1. Estimated classification time vs real classification
time. Dashed line shows least-squares approximation. The Pearson product-
moment correlation is 0.95.

Finally, in total we evaluated 7 classification modules, summarized in Table
8.2 (see Chapters 4, 6, and 7 for more details). As additional traffic features,
we used the transport protocol and destination port number for each module.
Although we consider port numbers as an unreliable feature, they still can pro-
vide valuable hint for more sophisticated classification mechanisms. Note that
the modules support the reject option, so each module can drop any flow if its
not certain about the outcome.

8.5.1 Experiment 1

In the first experiment, we compare simulated cost factors with real values for
arbitrary cascade configurations. We randomly selected 100,000 flows from each
of the first 4 datasets and ran static evaluation on them. Next, we generated
100 random cascades, and for each cascade we ran both real and simulated
classification. As a result, we obtained corresponding pairs of real and estimated
values of TX , EX , and UX .

The results for TX are presented in Fig. 8.2. For EX and UX , we did
not observe a single error, i.e. our method perfectly predicted the real values.
For CPU time estimations, we see a high correlation of 0.95, with little under-
estimation of the real value. For all datasets, the estimation error was below
20% for majority of evaluated cascades (with respect to the real value). The
error was above 50% only for 5% of evaluated cascades.

We conclude that in general our method properly estimates the cost factors
and we can use it to simulate different cascade configurations. Note that accu-
rate prediction of the CPU time is not necessary for optimization: it is enough
for the simulated time to be roughly proportional to the real value. Moreover,
even the real values will vary depending e.g. on the CPU load due to other
tasks executed in the background, which is difficult to predict.

78

10-1

100

101

102

103

104

105

106

C
as

ca
d
e

p
er

fo
rm

an
ce

0 2 4 6 8 10
a exponent

0

1

2

3

4

5

M
o
d
u
le

 c
o
u
n
t

0 2 4 6 8 10
b exponent

0 2 4 6 8 10
c exponent

CPU time Errors Unknown flows

Figure 8.3: Experiment 2. Optimizing the cascade for different goals: best
classification time (a exponent), minimal number of errors (b exponent), and
the lowest number of unlabeled flows (c exponent): the plot shows the averages
for 3 datasets.

8.5.2 Experiment 2

In our second experiment we show the effect of tuning the system for 3 different
goals: a) minimizing the computation time, b) minimizing errors, and c) labeling
as many flows as possible. We chose the following cost function:

C(X) = f(TX) + g(EX) + h(UX) = (TX)a + (EX)b + (UX)c (8.16)

with the default values of a, b, c equal to 0.95, 1.75, 1.20, respectively. We sepa-
rately varied these values in range of 0-10, and observed the performance of the
resultant cascades. For the sake of brevity, we ran the experiment for datasets
Asnet1, Asnet2, and IITiS1 and for modules dnsclass, dstip, npkts, port,
and portsize.

In Fig. 8.3, we present the results: dependence of cascade performance and
module count on the cost function parameters. As expected, higher a exponent
leads to faster classification and usually less errors, but with fewer modules
in the cascade, and more unclassified flows as a consequence. Optimizing for
accuracy—higher b exponent—leads to reduction of errors at the cost of higher
number of flows left without a label. Finally, if we choose to classify as much
traffic as possible (increasing the c exponent), the system will use all available
modules, at the cost of higher CPU time and error rate.

In more detail, for time optimization, the optimal cascades are: port for
Asnet1, portsize for Asnet2, and dnsclass for IITiS1. In the last case,
dnsclass is preferred due to high percentage of DNS traffic in IITiS1. In-
stead, in case of accuracy optimization, the optimal cascades are: portsize,

79

Asnet1 Asnet2 IITiS1 UPC1
Asnet1 1.01% 5.31% 48.96%
Asnet2 2.67% 7.29% 23.34%
IITiS1 33.37% 34.19% 192.91%
UPC1 14.51% 11.11% 31.77%

Reference
Test dataset

Table 8.3: Experiment 3. Result stability: relative increase in the cost C(X),
depending on the reference dataset used for determining the optimal cascade.

dnsclass, npkts, port for Asnet1, dstip, dnsclass, portsize for As-
net2, and dnsclass, port, dstip, portsize, npkts for IITiS1. Finally,
optimizing for minimum percentage of unrecognized flows yields a common re-
sult for all datasets: dnsclass, dstip, npkts, port, portsize.

Note that the results depend on the cost function. We used a power function
for presentation purposes, in order to easily show contrasting scenarios by small
adjustments to the exponents. For specific purposes, a multi-linear function
may be more appropriate, as it is often found in the literature, e.g. linear
scalarization of multi-objective optimization problems. Moreover, more complex
expressions—including thresholds on some parameters—can be used to find a
classification system capable of real-time operation: given an expected amount
of flows per second, one could find a cascade that is fast enough to handle the
traffic while keeping the other cost factors at possible minimum.

We conclude that our proposal works and is adaptable, i.e. by varying the
parameters we optimized the classification system for different goals.

8.5.3 Experiment 3

In the third experiment, we verify if the result of optimization is stable in time
and space, i.e. if an optimal cascade stays optimal with time and changes
of the network. We ran the optimization for 4 datasets, obtaining different
configuration for each dataset. Next, we evaluated these configurations on all
datasets and measured the increase in the cost function C(X) compared with the
original value. Note that we did not use the Unibs1 dataset for this experiment,
as it lacks packet payloads and hence needs different set of available modules.

Table 8.3 presents the results. We see that our proposal yielded results
that are stable in time for the same network: the cascades found for Asnet1
and Asnet2, which are 8 months apart, are similar and can be exchanged
with little decrease in performance. However, the cascades found for Asnet1
and Asnet2 gave 5-7% worse performance compared with IITiS1, and 23-49%
worse performance on UPC1. We observed extreme decrease in performance
when we varied both the network and time, especially when classifying UPC1
with cascade optimized for IITiS1.

We conclude that cascade optimization is specific to the network, but on
the other hand our results suggest that an optimal cascade does not change
significantly with time for given network. Thus, the network administrator does
not need to repeat the optimization procedure frequently.

80

Dataset Algorithm Cascade configuration Time [s] Errors Unknowns
myopic portname,portsize,port,dstip,dnsclass,stats,npkts 89 40 886
optimal portsize,portname,dstip,dnsclass,npkts,port,stats 87 30 886

+2% +26% 0%

myopic portname,portsize,port,dstip,dnsclass,stats,npkts 141 49 817
optimal portsize,portname,dstip,dnsclass,npkts,port 139 22 1,224

+2% +55% -50%

myopic dnsclass,port,portname,portsize,dstip,stats,npkts 5.7 2.4 80
optimal port,portsize,npkts,stats 5.1 2.4 80

+11% +0% 0%

myopic portsize,port,dstip,stats,npkts 102 2,017 13,892
optimal dstip,portsize,port,npkts,stats 91 1,985 13,892

+10% +2% 0%

myopic portname,port,portsize,dstip,dnsclass,stats,npkts 110 686 1,746
optimal port,portname,dstip,portsize,dnsclass,npkts,stats 92 604 1,746

+16% +12% 0%
Average improvement: +8% +19% -10%

Asnet1

Asnet2

IITiS1

Unibs1

UPC1

Table 8.4: Experiment 4. Average improvements compared with myopic opti-
mization.

8.5.4 Experiment 4

In the last experiment, we compare our proposal with a greedy optimizer, i.e.
a situation in which we arrange modules by increasing CPU time. This resem-
bles the basic approach used in Chapter 7: start with a generic sophisticated
classifier and prepend faster modules in front of it. Thus, for each module we
calculated the sum of ts and tc for each dataset separately, and ordered the
modules from the fastest to the slowest. We used the results as cascade con-
figurations, i.e. Waterfall systems configured with a conservative algorithm:
“myopic” optimization.

On the other hand, we also optimized the system using our proposal, with
the cost function given in Eq. 8.16, for a, b, c equal to 3.00, 1.75, 1.50, respec-
tively. We chose these exponent values arbitrarily to show an example of time
optimization: note that the a exponent (influencing the time cost factor) is the
highest. Then, we used the results as cascade configurations, but optimized
with an “optimal” algorithm.

Table 8.4 compares the results: in every case, our algorithm optimized the
classification system to work faster and with less errors, usually with the same
amount of unclassified flows. This demonstrates the point of cascade optimiza-
tion: it brings performance improvements. Recall that Unibs1 lacks packet
payloads, hence we used 5 modules in general for this dataset instead of 7.

On average, the system worked 8% faster compared with myopic time op-
timization, and reduced the error rate by 19%. For Asnet2, it also resulted
in higher number of unrecognized flows, but the increase is insignificant given
the dataset size, and this cost factor was not the goal of optimization. For
instance, if one wants a real-time traffic visualization system, then some small
portion of flows might remain unrecognized without negative effect on the whole
system. Thus, we conclude that our work is meaningful and can help network
administrators to tune cascade TC systems better than ad-hoc tools.

For completeness, in Table 8.5 we show the results of comparing our algo-

81

Dataset Algorithm CPU time Errors Unknown flows

Asnet1
random 23.7 0 2,750
optimal 7.6 0 26

+68% 0% +99%

Asnet2
random 34.5 26.4 10,350
optimal 28.4 15.0 363

+18% +43% +96%

IITiS1
random 28.5 0 9,203
optimal 12.9 0 1,327

+55% 0% +86%

Unibs1
random 6.7 25.8 356
optimal 1.6 20.0 267

+77% +23% +25%
Average improvement: +55% +17% +77%

Table 8.5: Experiment 4. Comparison with random cascades.

rithm with the average performance of random cascades generated in Experi-
ment 1 (for samples of 100,000 flows). In every case, our proposal yielded better
results, significantly reducing all cost factors.

8.6 Conclusions

In this chapter, we showed that the Waterfall architecture, together with an
optimization technique, lets for effective combining of traffic classifiers.

We described a new optimization method that separately evaluates classifi-
cation modules and quickly simulates their cascade operation in every possible
configuration. By searching for the cascade that minimizes a cost function,
the method finds the best configuration for given parameters: thus, one can
optimize for minimum CPU time, number of errors, number of unclassified IP
flows, or any combination of thereof. We experimentally validated our pro-
posal on real-world Internet traffic datasets, demonstrating method validity,
effectiveness, stability, and improvements with respect to myopic and random
optimizations.

82

Chapter 9

Thesis Conclusions

This work presented a new method for solving the problem of Traffic Classifica-
tion (TC) using cascades of classifiers—that is, the Waterfall architecture. The
first part of the thesis gave background necessary to understand the context of
our contribution: we described the field of TC in Chapter 2, followed by chapters
presenting the fundamentals of Machine Learning (ML) (Chapter 3), datasets
and tools (Chapter 4), and a survey of literature (Chapter 5). The second part
opened with a presentation of an original method for classifying IP flows using
the DNS system (Chapter 6). The method shows decent performance on real
IP traffic, but requires augmentation with other methods in order to target all
kinds of Internet traffic, and thus is an illustrative example of why the thesis is
important for the field of TC. Finally, we presented the Waterfall architecture
in Chapter 7, and gave a method for optimizing a classifier cascade in Chapter 8.

Thus, the thesis gave a complete discourse on applying cascade classification
to the TC problem, showing that it is effective and can be automatically tuned
for the desired performance. We used real Internet traffic datasets to evaluate
our proposals. An illustrative cascade integrating 5 different classifiers yielded
the result of %TP > 99.6% with %FP < 0.1% and %Unk < 1.4% for each of
4 different datasets. Moreover, more than 50% of all evaluated IP flows were
successfully classified by one of the first 3 cascade modules out of 5 total, which
is faster than classifier fusion that always runs all modules.

9.1 Discussion

The goal of this work was to support the following statement:

Cascade classification is an effective method for identifying Internet
traffic. It allows for connecting different traffic classifiers together
using the “divide and conquer” paradigm, and in comparison with
classifier fusion, it inherently requires less computing power.

Below, we show how that statement was explained and justified in the thesis.
First, we defined and discussed the following terms in Part I: cascade classi-

fication (Chapter 3), traffic identification (Chapter 2), different traffic classifiers
(Chapter 5), classifier fusion (Chapter 3). In order to accomplish that, we ref-
erenced elementary literature, reviewed state of the art papers, defined basic

83

concepts and procedures, and described relevant datasets and tools. Such ap-
proach was used to present the thesis contributions in a clear and concise way,
with relevant context and with an appropriate level of detail.

In Section 2.2, we gave a basic formalization of the concept “identifying
Internet traffic” in Equations 2.1, 2.2, and 2.3. In Chapter 7, we described
a cascade classifier that is able to satisfy these equations, which was validated
experimentally. Thus, we demonstrated that cascade classification is an effective
method for identifying Internet traffic.

In more detail, we showed the above using 4 different datasets of 5.5 bil-
lion IP packets X (comprising over 16 million IP flows Xi total), representing a
dozen applications l ∈ L. For each dataset, the evaluated cascade yielded proper
outcomes yi = (Xi, li), with excellent performance metrics (for instance, com-
paring to works surveyed in Chapter 5). Moreover, in Chapter 8 we introduced
an original method for optimizing a classifier cascade for desired performance
goals—in terms of CPU time, number of errors, and number of unrecognized
IP flows. Figure 8.3 presents the results of tuning a cascade for efficiency in 3
different scenarios, all of which gave a positive outcome.

Thus, we proved the first sentence of the thesis statement in Part II, using
experimental evaluation of our proposals, conforming to established procedures
for performance measurement (which were given in Part I). Yet, each contribu-
tion was presented in the context of existing literature to show method novelty
and our motivation. We chose these methods as they comprise the standard
research process adopted in state of the art papers (see Chapter 5).

In order to discuss the second sentence of the thesis statement, note that T.
Cormen et al. describe “divide and conquer” in Chapter 4 of [37] as a three-step
procedure consisting of the following steps: “divide”, “conquer” (solve), and
“combine”. Waterfall divides Internet traffic by applications, i.e. a subproblem
in TC is a subset of IP flows belonging to one or few protocols, or to several
protocols, but with a common traffic feature. This was demonstrated in detail
in Chapter 6, where we utilized the DNS domain names—a feature of just 30%
of evaluated IP flows.

Next, the “conquer” step is a natural consequence of the previous: we deal
with simpler ML tasks that require shorter feature vectors, and thus are less
prone to the peaking phenomenon (see Chapter 3). Moreover, each Waterfall
module can skip an unknown flow and pass it for inspection in the next module,
which reduces the need to learn exceptions to a general classification rule. We
gave an example for this in Chapter 7, where the dstip module of our illustrative
cascade just checked the destination IP address in a look-up table, which was
trivial yet effective.

For the last “combine” step, we adopted—and adapted—an MCS technique
of cascade classification (see Chapter 3), which was presented in Chapter 7
and extended in Chapter 8. Because each flow Xi gets only one classification
outcome yi, we combine solutions to subproblems just by adding yi to the set
of all outcomes, defined in Equation 2.1. This is simpler compared with BKS
(see Chapter 3), where one needs to wait for all modules to finish, and then to
query a look-up table to combine the outcomes.

Finally, we claim cascade classification of Internet traffic is inherently faster
in terms of CPU time than classifier fusion. As stated in the thesis introduction
(Chapter 1), we refrained from showing this experimentally (quantitatively), as
these two MCS techniques have different assumptions on their base classifiers.

84

Instead, in Chapter 3 we described and compared classifier fusion (on the
example of BKS) with cascade classification in terms of their qualities. For given
IP flow Xi and a fixed number of classifiers L, classifier fusion will always make L
queries to all modules. On the other hand, it is apparent that a classifier cascade
has the possibility to query less than L modules for the Xi label, which was
illustrated in Fig. 7.2: for 50% of IP flows, the algorithm was done after 3 out of
5 modules. Moreover, the BKS technique has to wait for all classifiers to finish,
and then make a final look-up in the BKS table to combine their outcomes.
So, comparing just the architecture of cascade classifiers with classifier fusion
systems, there is physically less work to do in the former case.

Last but not least, we do not claim superiority of any MCS technique for
identifying Internet traffic over the rest, as these techniques adopt different
base classifiers, so predicting their net effect in a specific TC context seems
impossible.

9.2 Summary

TC is crucial for managing the Internet. It lets for on-line inspection of IP traffic
without human intervention, which enables traffic shaping, intelligent routing,
traffic visualization, intrusion prevention, and much more. TC systems are in the
product portfolio of leading manufacturers of networking hardware, like Cisco,
Juniper Networks, and PaloAlto Networks. Because of the anticipated growth
of the Internet—in terms of traffic volume, application diversity, and number of
connected devices—the TC problem is going to be increasingly complex.

The thesis gave a viable solution for breaking this complex task into sub-
problems that can be solved independently. Thus, we believe our contribution
opened a new avenue for future TC systems by proposing a decent alternative
to classifier fusion systems. However, we acknowledge certain limitations of this
work. First, we did not investigate the issue of optimal cascade training, i.e.
whether each module should be trained using the full dataset, or just the subset
of flows it will see when put in a specific cascade. Second, we did not com-
pare Waterfall with a BKS or another fusion system, comprised of suitable base
classifiers. These two topics are open issues for future research.

In summary, this thesis combined and put in context a few works published
in the years of 2012-2017, which for the first time brought the idea of cascading
classifiers to the field of traffic classification. Practical implementation and
evaluation of the proposals yielded excellent results. We presented relevant
context and background knowledge, and showed how to build and tune cascade
classifiers of Internet traffic in practice. The Waterfall architecture enables
researchers to effectively utilize dedicated classifiers that target subproblems in
TC as elements of a larger system comprised of many different classifiers.

85

Bibliography

[1] S. Abdelazeem. A greedy approach for building classification cascades. In
Machine Learning and Applications, 2008. ICMLA’08. Seventh Interna-
tional Conference on, pages 115–120. IEEE, 2008.

[2] G. Aceto, A. Dainotti, W. de Donato, and A. Pescapé. PortLoad: Tak-
ing the best of two worlds in traffic classification. In INFOCOM IEEE
Conference on Computer Communications Workshops, 2010, pages 1 – 5.
IEEE, 2010.

[3] D. Adami, C. Callegari, S. Giordano, M. Pagano, and T. Pepe. Skype-
Hunter: A real-time system for the detection and classification of Skype
traffic. International Journal of Communication Systems, 25(3):386–403,
2012.

[4] S. Alcock. libflowmanager. Available from: https://research.wand.

net.nz/software/libflowmanager.php [26 May 2017].

[5] S. Alcock, P. Lorier, and R. Nelson. Libtrace: a packet capture and analy-
sis library. ACM SIGCOMM Computer Communication Review, 42(2):42–
48, 2012.

[6] S. Alcock and R. Nelson. Libprotoident: Traffic Classification Using
Lightweight Packet Inspection. Technical report, University of Waikato,
2013. http://www.wand.net.nz/publications/lpireport.

[7] Allot Communications. Traffic Classification prod-
ucts. Available from: http://www.allot.com/products/

traffic-management-and-optimization/traffic-management/

[20 January 2016].

[8] E. Alpaydin and C. Kaynak. Cascading classifiers. Kybernetika, 34(4):369–
374, 1998.

[9] R. Alshammari and A. N. Zincir-Heywood. Machine learning based en-
crypted traffic classification: identifying ssh and skype. In Computational
Intelligence for Security and Defense Applications, 2009. CISDA 2009.
IEEE Symposium on, pages 1–8. IEEE, 2009.

[10] AppBrain. Number of Android applications. Available from: https:

//www.appbrain.com/stats/number-of-android-apps [15 Nov 2017].

[11] ARIN. Whois Database. Available from: https://whois.arin.net/ [9
November 2015].

86

https://research.wand.net.nz/software/libflowmanager.php
https://research.wand.net.nz/software/libflowmanager.php
http://www.wand.net.nz/publications/lpireport
http://www.allot.com/products/traffic-management-and-optimization/traffic-management/
http://www.allot.com/products/traffic-management-and-optimization/traffic-management/
https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://whois.arin.net/

[12] F. Audet and C. Jennings. Network Address Translation (NAT) Behav-
ioral Requirements for Unicast UDP. RFC 4787 (Best Current Practice),
Jan. 2007.

[13] R. Battiti and A. M. Colla. Democracy in neural nets: Voting schemes
for classification. Neural Networks, 7(4):691–707, 1994.

[14] P. Bermolen, M. Mellia, M. Meo, D. Rossi, and S. Valenti. Abacus: Ac-
curate behavioral classification of P2P-TV traffic. Computer Networks,
55(6):1394 – 1411, 2011.

[15] I. Bermudez, M. Mellia, M. M. Munafò, R. Keralapura, and A. Nucci.
DNS to the Rescue: Discerning Content and Services in a Tangled Web.
In Proceedings of the 12th ACM SIGCOMM Conference on Internet Mea-
surement, IMC’12, volume 1101, page 12, 2012.

[16] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identifica-
tion. In Proceedings of the 2006 ACM CoNEXT conference, page 6. ACM,
2006.

[17] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[18] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli. Revealing
skype traffic: When randomness plays with you. ACM SIGCOMM Com-
puter Communication Review, 37(4):37 – 48, 2007.

[19] R. Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122 (Internet Standard), Oct. 1989.

[20] Bro. Traffic Classification products. Available from: https://www.bro.

org/ [20 January 2016].

[21] T. Bujlow and V. Carela-Espanol. Comparison of Deep Packet Inspec-
tion (DPI) Tools for Traffic Classification. Technical report, Polytechnic
University of Catalonia, 2013.

[22] T. Bujlow, V. Carela-Español, and P. Barlet-Ros. Independent comparison
of popular DPI tools for traffic classification. Computer Networks, 76:75–
89, 2015.

[23] T. Bujlow, V. Carela-Español, and P. Barlet-Ros. Dataset: In-
dependent Comparison of Popular DPI Tools for Traffic Classi-
fication. Available from: http://www.cba.upc.edu/monitoring/

traffic-classification [13 January 2017].

[24] J. But, T. Nguyen, L. Stewart, N. Williams, and G. Armitage. Perfor-
mance analysis of the angel system for automated control of game traffic
prioritisation. In Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games, pages 123–128. ACM, 2007.

[25] CAIDA. Internet Traffic Classification. Available from: http://www.

caida.org/research/traffic-analysis/classification-overview/

[27 March 2013].

87

https://www.bro.org/
https://www.bro.org/
http://www.cba.upc.edu/monitoring/traffic-classification
http://www.cba.upc.edu/monitoring/traffic-classification
http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.caida.org/research/traffic-analysis/classification-overview/

[26] CAIDA. Overview of Datasets, Monitors, and Reports. Available from:
http://www.caida.org/data/overview/ [13 January 2017].

[27] CAIDA. The Cooperative Association for Internet Data Analysis. Avail-
able from: http://www.caida.org/ [20 January 2016].

[28] A. Callado, C. Kamienski, G. Szabó, B. Gero, J. Kelner, S. Fernandes,
and D. Sadok. A survey on internet traffic identification. Communications
Surveys & Tutorials, IEEE, 11(3):37–52, 2009.

[29] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-
Pareta. Analysis of the impact of sampling on NetFlow traffic classifi-
cation. Computer Networks, 55(5):1083–1099, 2011.

[30] V. Carela-Español, P. Barlet-Ros, M. Solé-Simó, A. Dainotti, W. de Do-
nato, and A. Pescapé. K-dimensional trees for continuous traffic classifi-
cation. Traffic Monitoring and Analysis, pages 141 – 154, 2010.

[31] V. Carela-Español, T. Bujlow, and P. Barlet-Ros. Is our ground-truth for
traffic classification reliable? In Passive and Active Measurement, pages
98–108. Springer, 2014.

[32] K. Chellapilla, M. Shilman, and P. Simard. Optimally combining a cascade
of classifiers. In Proceedings of SPIE, volume 6067, pages 207–214, 2006.

[33] Cisco. Traffic Classification products. Available from: http://www.

cisco.com/c/en/us/products/security/ [20 January 2016].

[34] Cisco. Visual Networking Index: Forecast and Methodology, 2016–2021.
Available from: https://www.cisco.com/c/dam/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/

complete-white-paper-c11-481360.pdf [15 Nov 2017].

[35] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(Informational), Oct. 2004.

[36] B. Cohen. The BitTorrent Protocol Specification. Available from: http:
//bittorrent.org/beps/bep_0003.html [18 May 2015].

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. MIT Press, 2009.

[38] K. Crammer and Y. Singer. On the algorithmic implementation of mul-
ticlass kernel-based vector machines. The Journal of Machine Learning
Research, 2:265–292, 2002.

[39] CTorrent project. CTorrent website. Available from: http://

sourceforge.net/projects/ctorrent/ [18 May 2015].

[40] A. Dainotti, A. Pescape, and K. C. Claffy. Issues and future directions in
traffic classification. Network, IEEE, 26(1):35–40, 2012.

[41] A. Dainotti, A. Pescapé, and C. Sansone. Early classification of network
traffic through multi-classification. In Traffic Monitoring and Analysis,
pages 122–135. Springer, 2011.

88

http://www.caida.org/data/overview/
http://www.caida.org/
http://www.cisco.com/c/en/us/products/security/
http://www.cisco.com/c/en/us/products/security/
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html
http://sourceforge.net/projects/ctorrent/
http://sourceforge.net/projects/ctorrent/

[42] T. G. Dietterich et al. Ensemble methods in machine learning. Multiple
classifier systems, 1857:1–15, 2000.

[43] T. G. Dietterich and P. Langley. Machine learning for cognitive networks:
Technology assessment and research challenges. Cognitive Networks: To-
wards Self-Aware Networks, page 97, 2007.

[44] P. Domingos and M. Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine learning, 29(2):103–130, 1997.

[45] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John
Wiley & Sons, 2012.

[46] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli. Tunnel hunter: De-
tecting application-layer tunnels with statistical fingerprinting. Computer
Networks, 53(1):81 – 97, 2009.

[47] M. Dusi, A. Este, F. Gringoli, and L. Salgarelli. Taking a Peek at Band-
width Usage on Encrypted Links. In Communications (ICC), 2011 IEEE
International Conference on, pages 1 – 6. IEEE, 2011.

[48] M. Dusi, F. Gringoli, and L. Salgarelli. Quantifying the accuracy of the
ground truth associated with Internet traffic traces. Computer Networks,
55(5):1158 – 1167, 2011.

[49] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall. Analyzing the Great
Firewall of China over space and time. Proceedings on privacy enhancing
technologies, 2015(1):61–76, 2015.

[50] F. Gringoli et al. UNIBS: Data sharing. Available from: http://netweb.
ing.unibs.it/~ntw/tools/traces/index.php [13 January 2017].

[51] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIB-
LINEAR: A library for large linear classification. The Journal of Machine
Learning Research, 9:1871–1874, 2008.

[52] P. Fiadino, A. Bär, and P. Casas. HTTPTag: A Flexible On-line HTTP
Classification System for Operational 3G Networks. In International Con-
ference on Computer Communications, 2013. INFOCOM’13. IEEE, 2013.

[53] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999.

[54] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, and D. Rossi. Experi-
ences of internet traffic monitoring with tstat. Network, IEEE, 25(3):8–14,
2011.

[55] A. Finamore, M. Mellia, M. Meo, and D. Rossi. KISS: Stochastic packet
inspection. Traffic Monitoring and Analysis, pages 117 – 125, 2009.

[56] A. Finamore, M. Mellia, M. Meo, and D. Rossi. KISS: Stochastic packet
inspection classifier for udp traffic. Networking, IEEE/ACM Transactions
on, 18(5):1505 – 1515, 2010.

89

http://netweb.ing.unibs.it/~ntw/tools/traces/index.php
http://netweb.ing.unibs.it/~ntw/tools/traces/index.php

[57] G. Folino, F. S. Pisani, and P. Sabatino. A distributed intrusion detection
framework based on evolved specialized ensembles of classifiers. In Euro-
pean Conference on the Applications of Evolutionary Computation, pages
315–331. Springer, 2016.

[58] P. Foremski. Flowcalc: software toolkit for calculating IP flow statistics.
https://mutrics.iitis.pl/flowcalc.

[59] P. Foremski. Multilevel Traffic Classification - project website. Available
from: http://mutrics.iitis.pl/ [17 Nov 2017].

[60] P. Foremski. MuTriCs: Automatic trace generation. Available from:
http://mutrics.iitis.pl/automatic-traffic-trace-generation [9
February 2017].

[61] P. Foremski. Tracedump: A Novel Single Application IP Packet Sniffer.
Theoretical and Applied Informatics, 24(1):23–31, 2012.

[62] P. Foremski. On different ways to classify Internet traffic: a short review of
selected publications. Theoretical and Applied Informatics, 25(2):119–136,
2013.

[63] P. Foremski, C. Callegari, and M. Pagano. DNS-Class: Immediate clas-
sification of IP flows using DNS. International Journal of Network Man-
agement, 24(4):272–288, 2014.

[64] P. Foremski, C. Callegari, and M. Pagano. Waterfall: Rapid identifi-
cation of IP flows using cascade classification. In Communications in
Computer and Information Science. Proceedings of the 21st International
Conference on Computer Networks, CN2014, volume 431, pages 14–23.
Springer-Verlag, 2014.

[65] P. Foremski, C. Callegari, and M. Pagano. Waterfall traffic identification:
optimizing classification cascades. In Communications in Computer and
Information Science. Proceedings of the 22nd International Conference on
Computer Networks, CN2015, volume 522. Springer-Verlag, 2015.

[66] P. Foremski, C. Callegari, and M. Pagano. Waterfall traffic classification:
A quick approach to optimizing cascade classifiers. Wireless Personal
Communications, 96(4):5467–5482, 2017.

[67] J. Frank. Artificial intelligence and intrusion detection: Current and fu-
ture directions. In Proceedings of the 17th national computer security
conference, volume 10, pages 1–12. Baltimore, USA, 1994.

[68] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for find-
ing best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS), 3(3):209–226, 1977.

[69] Gartner. Forecast: Internet of things - endpoints and associated ser-
vices, worldwide, 2016. Available from: https://www.gartner.com/doc/
3558917/forecast-internet-things--endpoints [15 Nov 2017].

90

https://mutrics.iitis.pl/flowcalc
http://mutrics.iitis.pl/
http://mutrics.iitis.pl/automatic-traffic-trace-generation
https://www.gartner.com/doc/3558917/forecast-internet-things--endpoints
https://www.gartner.com/doc/3558917/forecast-internet-things--endpoints

[70] J. V. Gomes, P. R. Inácio, M. Pereira, M. M. Freire, and P. P. Mon-
teiro. Detection and classification of peer-to-peer traffic: A survey. ACM
Computing Surveys (CSUR), 45(3):30, 2013.

[71] G. Greenwald. XKeyscore: NSA tool collects nearly everything a user
does on the Internet. Available from: http://www.theguardian.com/

world/2013/jul/31/nsa-top-secret-program-online-data [19 Jan-
uary 2016].

[72] L. Grimaudo, M. Mellia, E. Baralis, and R. Keralapura. SeLeCT: self-
learning classifier for internet traffic. Network and Service Management,
IEEE Transactions on, 11(2):144–157, 2014.

[73] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and K. Claffy.
Gt: Picking up the truth from the ground for internet traffic. ACM
SIGCOMM Computer Communication Review, 39(5):13 – 18, 2009.

[74] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Be-
havioral Requirements for TCP. RFC 5382 (Best Current Practice), Oct.
2008.

[75] Y. S. Huang and C. Y. Suen. A method of combining multiple experts for
the recognition of unconstrained handwritten numerals. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 17(1):90–94, 1995.

[76] IANA. Service Name and Transport Protocol Port Number
Registry. Available from: http://www.iana.org/assignments/

service-names-port-numbers/service-names-port-numbers.xml [9
November 2015].

[77] IDC. Worldwide 2014 Software Developer and ICT-Skilled Worker
Estimates. Available from: http://www.idc.com/getdoc.jsp?

containerId=244709 [14 April 2015].

[78] ipoque. Traffic Classification products. Available from: https://ipoque.
com/products/dpi-engine-rsrpace-2 [11 December 2017].

[79] A. K. Jain, R. P. Duin, and J. Mao. Statistical pattern recognition: A
review. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 22(1):4–37, 2000.

[80] Juniper Networks. Traffic Classification products. Available from:
https://www.juniper.net/us/en/products-services/security/ [20
January 2016].

[81] T. Karagiannis, A. Broido, N. Brownlee, K. C. Claffy, and M. Faloutsos.
Is P2P dying or just hiding? In Global Telecommunications Conference,
2004. GLOBECOM’04. IEEE, volume 3, pages 1532–1538. IEEE, 2004.

[82] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: multilevel
traffic classification in the dark. ACM SIGCOMM Computer Communi-
cation Review, 35(4):229–240, 2005.

91

http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.idc.com/getdoc.jsp?containerId=244709
http://www.idc.com/getdoc.jsp?containerId=244709
https://ipoque.com/products/dpi-engine-rsrpace-2
https://ipoque.com/products/dpi-engine-rsrpace-2
https://www.juniper.net/us/en/products-services/security/

[83] S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin.
A sequential dual method for large scale multi-class linear SVMs. In Pro-
ceedings of the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 408–416. ACM, 2008.

[84] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and K. Claffy. The
architecture of CoralReef: an Internet traffic monitoring software suite. In
PAM2001, Workshop on Passive and Active Measurements, RIPE. Cite-
seer, 2001.

[85] J. Khalife, A. Hajjar, and J. Diaz-Verdejo. A multilevel taxonomy and re-
quirements for an optimal traffic-classification model. International Jour-
nal of Network Management, 24(2):101–120, 2014.

[86] H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee.
Internet traffic classification demystified: Myths, caveats, and the best
practices. In Proceedings of the 2008 ACM CoNEXT conference, page 11.
ACM, 2008.

[87] L. I. Kuncheva. Combining pattern classifiers: methods and algorithms.
John Wiley & Sons, 2004.

[88] L. I. Kuncheva. Combining pattern classifiers: Methods and Algorithms,
Second Edition. John Wiley & Sons, 2014.

[89] Y. Lecun and C. Cortes. The MNIST database of handwritten dig-
its. Available from: http://yann.lecun.com/exdb/mnist/ [13 January
2017].

[90] Linux kernel. ld.so(8) manual page. Available from: http://www.kernel.
org/doc/man-pages/online/pages/man8/ld.so.8.html [18 May 2015].

[91] Linux kernel. packet(7) manual page. Available from: http://www.

kernel.org/doc/man-pages/online/pages/man7/packet.7.html [18
May 2015].

[92] Linux kernel. ptrace(2) manual page. Available from: http://www.

kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html [18
May 2015].

[93] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant charac-
teristics of residential broadband internet traffic. In Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement, IMC’09, pages
90–102. ACM, 2009.

[94] B. Marczak, J. Dalek, S. McKune, A. Senft, J. Scott-Railton, and R. Deib-
ert. BAD TRAFFIC: Sandvine’s PacketLogic Devices Used to Deploy
Government Spyware in Turkey and Redirect Egyptian Users to Affiliate
Ads? Available from: https://goo.gl/zFGXMg [9 March 2018].

[95] M. N. Marsono, M. W. El-Kharashi, and F. Gebali. Targeting spam
control on middleboxes: Spam detection based on layer-3 e-mail content
classification. Computer Networks, 53(6):835–848, 2009.

92

http://yann.lecun.com/exdb/mnist/
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man8/ld.so.8.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/packet.7.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html
https://goo.gl/zFGXMg

[96] MAWI. Traffic Archive. Available from: http://mawi.wide.ad.jp/

mawi/ [13 January 2017].

[97] S. McCanne and V. Jacobson. The bsd packet filter: A new architecture
for user-level packet capture. In Proceedings of the USENIX Winter 1993
Conference Proceedings on USENIX Winter 1993 Conference Proceedings,
pages 2–2. USENIX Association, 1993.

[98] T. Mitchell. The Discipline of Machine Learning. Technical report, 2006.

[99] P. Mockapetris. Domain names - implementation and specification. RFC
1035 (Internet Standard), Nov. 1987.

[100] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT press, 2012.

[101] A. W. Moore and D. Zuev. Internet traffic classification using bayesian
analysis techniques. ACM SIGMETRICS Performance Evaluation Re-
view, 33(1):50 – 60, 2005.

[102] mPlane Project. mPlane Publications. Available from: http://www.

ict-mplane.eu/public/publications [20 January 2016].

[103] G. Münz, H. Dai, L. Braun, and G. Carle. TCP traffic classification using
Markov models. Traffic Monitoring and Analysis, pages 127 – 140, 2010.

[104] G. Münz, S. Heckmüller, L. Braun, and G. Carle. Improving Markov-
based TCP Traffic Classification. In KiVS, pages 61–72, 2011.

[105] T. T. Nguyen and G. Armitage. A survey of techniques for internet traffic
classification using machine learning. Communications Surveys & Tutori-
als, IEEE, 10(4):56–76, 2008.

[106] P. Norvig. Word segmentation. In T. Segaran and J. Hammerbacher, ed-
itors, Beautiful data: the stories behind elegant data solutions, pages 221–
227. O’Reilly Media, Incorporated, 2009. http://norvig.com/ngrams/

ch14.pdf.

[107] M. Nottingham. Edward Snowden at IETF 93. Available from: https:

//gist.github.com/mnot/382aca0b23b6bf082116 [19 January 2016].

[108] ntop. nDPI Deep Packet Inspection library. Available from: http://www.
ntop.org/products/deep-packet-inspection/ndpi/ [12 June 2017].

[109] nTop. Traffic Classification products. Available from: http://www.ntop.
org/ [11 December 2017].

[110] PaloAlto Networks. Traffic Classification products. Available from:
https://www.paloaltonetworks.com/technologies/app-id [11 De-
cember 2017].

[111] B. Park, Y. Won, J. Chung, M.-s. Kim, and J. W.-K. Hong. Fine-grained
traffic classification based on functional separation. International Journal
of Network Management, 2013.

93

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
http://www.ict-mplane.eu/public/publications
http://www.ict-mplane.eu/public/publications
http://norvig.com/ngrams/ch14.pdf
http://norvig.com/ngrams/ch14.pdf
https://gist.github.com/mnot/382aca0b23b6bf082116
https://gist.github.com/mnot/382aca0b23b6bf082116
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.ntop.org/products/deep-packet-inspection/ndpi/
http://www.ntop.org/
http://www.ntop.org/
https://www.paloaltonetworks.com/technologies/app-id

[112] B.-C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong. Towards automated
application signature generation for traffic identification. In Network Op-
erations and Management Symposium, 2008. NOMS 2008. IEEE, pages
160–167. IEEE, 2008.

[113] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee. Mcpad: A
multiple classifier system for accurate payload-based anomaly detection.
Computer networks, 53(6):864–881, 2009.

[114] M. Pietrzyk, L. Janowski, and G. Urvoy-Keller. Toward systematic meth-
ods comparison in traffic classification. In Wireless Communications and
Mobile Computing Conference (IWCMC), 2011 7th International, pages
1022–1027. IEEE, 2011.

[115] M. Pietrzyk, L. Plissonneau, G. Urvoy-Keller, and T. En-Najjary. On
profiling residential customers. In Traffic Monitoring and Analysis, pages
1–14. Springer, 2011.

[116] Plixer. Traffic Classification products. Available from: https://www.

plixer.com/ [20 January 2016].

[117] D. Plonka and P. Barford. Flexible Traffic and Host Profiling via DNS
Rendezvous. In Proceedings of the Workshop on Securing and Trusting
Internet Names, SATIN 2011, 2011.

[118] J. Postel. Internet Protocol. RFC 791 (Internet Standard), Sept. 1981.

[119] J. Postel. Transmission Control Protocol. RFC 793 (Internet Standard),
Sept. 1981.

[120] L. R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257 – 286,
1989.

[121] G. Rogova. Combining the results of several neural network classifiers.
Neural networks, 7(5):777–781, 1994.

[122] L. Rokach. Taxonomy for characterizing ensemble methods in classifica-
tion tasks: A review and annotated bibliography. Computational Statistics
& Data Analysis, 53(12):4046–4072, 2009.

[123] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service map-
ping for QoS: A statistical signature-based approach to IP traffic classifi-
cation. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 135 – 148. ACM, 2004.

[124] L. Salgarelli, F. Gringoli, and T. Karagiannis. Comparing traffic classifiers.
ACM SIGCOMM Computer Communication Review, 37(3):65 – 68, 2007.

[125] G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

[126] M. Samcik. Ile warte sa dane o tym co lubisz? Telekom zaplaci ci za to 6 zl
miesiecznie [in Polish]. Available from: http://samcik.blox.pl/2015/

04/Ile-warte-sa-dane-o-tym-co-lubisz-Telekom-zaplaci.html [20
January 2016].

94

https://www.plixer.com/
https://www.plixer.com/
http://samcik.blox.pl/2015/04/Ile-warte-sa-dane-o-tym-co-lubisz-Telekom-zaplaci.html
http://samcik.blox.pl/2015/04/Ile-warte-sa-dane-o-tym-co-lubisz-Telekom-zaplaci.html

[127] P. Schneider. Tcp/ip traffic classification based on port numbers. Division
Of Applied Sciences, Cambridge, MA, 2138, 1996.

[128] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network iden-
tification of p2p traffic using application signatures. In Proceedings of the
13th international conference on World Wide Web, pages 512–521. ACM,
2004.

[129] L. Shapley and B. Grofman. Optimizing group judgmental accuracy in
the presence of interdependencies. Public Choice, 43(3):329–343, 1984.

[130] Sikuli Project. Sikuli Website. Available from: http://www.sikuli.org/
[9 February 2017].

[131] SolarWinds. Traffic Classification products. Available from: https://

www.solarwinds.com/netflow-traffic-analyzer [11 December 2017].

[132] L. Stewart, G. Armitage, P. Branch, and S. Zander. An architecture for
automated network control of qos over consumer broadband links. In
TENCON 2005 2005 IEEE Region 10, pages 1–6. IEEE, 2005.

[133] Suricata IDS. Traffic Classification products. Available from: http://

suricata-ids.org/ [20 January 2016].

[134] G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó. On the validation of
traffic classification algorithms. In Passive and Active Network Measure-
ment, pages 72–81. Springer, 2008.

[135] G. Szabó, I. Szabó, and D. Orincsay. Accurate traffic classification. In
World of Wireless, Mobile and Multimedia Networks, 2007. WoWMoM
2007. IEEE International Symposium on a, pages 1–8. IEEE, 2007.

[136] Talaia. Network Visibility. Available from: https://www.talaia.io/

overview/ [13 January 2017].

[137] tcpdump project. tcpdump/libpcap webpage. Available from: http:

//www.tcpdump.org/ [18 May 2015].

[138] Tstat. Traffic Classification products. Available from: http://tstat.

polito.it/ [20 January 2016].

[139] Tstat Project. Skype Traces. Available from: http://tstat.tlc.

polito.it/traces-skype.shtml [27 March 2013].

[140] Tstat Project. Tstat Publications. Available from: http://tstat.

polito.it/publications.php [20 January 2016].

[141] Tstat Project. Tstat Traces. Available from: http://tstat.tlc.polito.
it/traces.shtml [9 February 2017].

[142] University of Waikato. WAND Network Research Group. Available from:
http://wand.net.nz/ [20 January 2016].

[143] University of Waikato. WAND Waikato Internet Traffic Storage. Available
from: http://wand.net.nz/wits/ [9 February 2017].

95

http://www.sikuli.org/
https://www.solarwinds.com/netflow-traffic-analyzer
https://www.solarwinds.com/netflow-traffic-analyzer
http://suricata-ids.org/
http://suricata-ids.org/
https://www.talaia.io/overview/
https://www.talaia.io/overview/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://tstat.polito.it/
http://tstat.polito.it/
http://tstat.tlc.polito.it/traces-skype.shtml
http://tstat.tlc.polito.it/traces-skype.shtml
http://tstat.polito.it/publications.php
http://tstat.polito.it/publications.php
http://tstat.tlc.polito.it/traces.shtml
http://tstat.tlc.polito.it/traces.shtml
http://wand.net.nz/
http://wand.net.nz/wits/

[144] UPC. CoMo-UPC: TMA evaluation service @ UPC. Available from:
http://monitoring.ccaba.upc.edu/como-upc/ [27 March 2013].

[145] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and M. Mellia.
Reviewing traffic classification. In Data Traffic Monitoring and Analysis,
pages 123–147. Springer, 2013.

[146] S. Valenti, D. Rossi, M. Meo, M. Mellia, and P. Bermolen. Accurate, fine-
grained classification of P2P-TV applications by simply counting packets.
Traffic Monitoring and Analysis, pages 84 – 92, 2009.

[147] P. Velan, M. Čermák, P. Čeleda, and M. Drašar. A survey of methods
for encrypted traffic classification and analysis. International Journal of
Network Management, 25(5):355–374, 2015.

[148] K. Velten. Mathematical modeling and simulation: introduction for sci-
entists and engineers. John Wiley & Sons, 2009.

[149] K.-D. Wernecke. A coupling procedure for the discrimination of mixed
data. Biometrics, pages 497–506, 1992.

[150] N. Williams, S. Zander, and G. Armitage. Evaluating machine learning
algorithms for automated network application identification. Center for
Advanced Internet Architectures, CAIA, Technical Report B, 60410:2006,
2006.

[151] Wireshark project. PCAP file format. Available from: http://wiki.

wireshark.org/Development/LibpcapFileFormat [18 May 2015].

[152] Wireshark project. Wireshark website. Available from: https://www.

wireshark.org/ [18 May 2015].

[153] D. H. Wolpert. The lack of a priori distinctions between learning algo-
rithms. Neural computation, 8(7):1341–1390, 1996.

[154] K. Xu, Z.-L. Zhang, and S. Bhattacharyya. Profiling internet backbone
traffic: Behavior models and applications. ACM SIGCOMM Computer
Communication Review, 35(4):169 – 180, 2005.

[155] S. H. Yeganeh, M. Eftekhar, Y. Ganjali, R. Keralapura, and A. Nucci.
CUTE: Traffic Classification Using TErms. In Computer Communications
and Networks (ICCCN), 2012 21st International Conference on, pages 1–
9. IEEE, 2012.

[156] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: using gui screenshots for
search and automation. In Proceedings of the 22nd annual ACM sym-
posium on User interface software and technology, pages 183–192. ACM,
2009.

[157] H.-F. Yu, C.-H. Ho, Y.-C. Juan, and C.-J. Lin. Libshorttext: A library
for short-text classification and analysis. Technical report, National Tai-
wan University, 2013. http://www.csie.ntu.edu.tw/~cjlin/papers/

libshorttext.pdf.

96

http://monitoring.ccaba.upc.edu/como-upc/
http://wiki.wireshark.org/Development/LibpcapFileFormat
http://wiki.wireshark.org/Development/LibpcapFileFormat
https://www.wireshark.org/
https://www.wireshark.org/
http://www.csie.ntu.edu.tw/~cjlin/papers/libshorttext.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libshorttext.pdf

[158] S. Zander, T. Nguyen, and G. Armitage. Automated traffic classification
and application identification using machine learning. In Local Computer
Networks, 2005. 30Th Anniversary. The IEEE Conference on, pages 250
– 257. IEEE, 2005.

[159] M. Zhang, W. John, K. Claffy, and N. Brownlee. State of the art in traffic
classification: A research review. In PAM Student Workshop, 2009.

97

	Introduction
	Background
	Thesis Statement
	Motivation
	Contributions
	Outline and methodology

	I Traffic Classification using Machine Learning
	Traffic Classification
	General approach
	The TC problem
	Design and taxonomy of TC systems
	Practical applications

	Machine Learning
	Introduction
	Supervised learning
	Training and testing
	Performance metrics
	Multiple Classifier Systems
	Behavior Knowledge Space
	Cascade Classifiers

	Datasets and Tools
	Introduction
	Tracedump: single application sniffer
	Related works
	Problem analysis
	Proposed solution
	Practical application
	Summary

	Flowcalc: flow analysis toolkit
	Introduction
	IP flow tracking
	Available modules

	Literature Survey
	Related works
	Traffic classification
	Single application detection
	Obtaining ground-truth
	Traffic analysis
	Discussion
	Conclusions

	II Cascade Classifiers of Internet Traffic
	The DNS-Class algorithm
	Introduction
	The DNS-Class algorithm
	DNS Search
	Flow Classification
	Rationale

	Datasets and traffic analysis
	Traffic traces
	Traffic characteristics

	Experimental evaluation
	Methodology
	Experiments

	Discussion
	Related works
	Conclusions

	The Waterfall architecture
	Introduction
	Background
	The Waterfall architecture
	Practical implementation
	Experiments
	Methodology
	Results

	Conclusions

	Optimizing cascade classifiers
	Introduction
	Problem statement
	Proposed solution
	Discussion
	Experimental validation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusions

	Thesis Conclusions
	Discussion
	Summary

